REPORT ON
MHC MULTIMER
PROFICIENCY PANEL 2018

January, 2019
This report summarizes the results of the MHC Multimer Proficiency Panel 2018. The report provides individual test results for each participating laboratory, as well as an anonymized overview of the other participants’ test results.

18 laboratories from 8 countries participated in the MHC Multimer Proficiency Panel 2018.

The proficiency panel services offered by Immudex are open to any laboratory, independent of geographic location or field of interest, with a need to perform accurate and reproducible quantification of antigen-specific T cells.

The report is provided using European numeration.

Immudex has taken over the MHC Multimer and Elispot proficiency panels from the CIC (Cancer Immunotherapy Consortium of the Cancer Research Institute, USA) and the CIMT (Association for Cancer Immunotherapy, Europe).

The proficiency panels conducted by Immudex are non-profit services offered with the intent of testing and ensuring a high level of proficiency and reliability among the researchers and clinicians that perform the immune monitoring assays.

The current MHC Multimer Proficiency Panel is therefore not a harmonization panel, but rather a proficiency testing service. Consequently, harmonization and standardization is not addressed in this report.

The next MHC Multimer Proficiency Panel will be held in fall 2019.
Contents

Information on Participants, Protocols, Reagents, and Cell Samples 3
Analyses Performed by the Participants .. 4
Presentation of Data .. 4
Overall Proficiency .. 10
Acknowledgements .. 11
About Immudex .. 12
Appendix 1: Instructions for the MHC Multimer Proficiency Panel 2018 13
Appendix 2: PBMC 2010113563 Reported Numbers .. 18
Appendix 3: PBMC 2010113564 Reported Numbers .. 19
INFORMATION ON PARTICIPANTS, PROTOCOLS, REAGENTS, AND CELL SAMPLES

- 18 laboratories participated in the MHC Multimer Proficiency Panel 2018.
- Each participating laboratory was assigned a confidential participant Identification Number (Lab ID), only known by the laboratory itself and Immudex.
- Each participant received two vials of PBMCs (human peripheral blood mononuclear cells), named PBMC 2010113563 and PBMC 2010113564, respectively.
- The PBMC’s were shipped in liquid nitrogen. A temperature logger was included in the shipment, allowing observation of vial temperature from packaging to delivery.
- MHC Dextramer reagents were provided by Immudex upon request. 17 laboratories requested MHC Dextramer reagents.
- The 4 MHC multimer specificities tested were:
 - CMV HLA-A*0201/NLVPMVATV
 - CMV HLA-B*3501/IPSINVHHY
 - FLU HLA-A*0201/GILGFVFTL
 - EBV HLA-B*3501/HPVGEADYFEY
- A negative control MHC multimer displaying an irrelevant peptide was also included.
- Each laboratory performed the MHC Multimer Proficiency Panel assay according to their own preferred operating procedure.
- Instructions including Harmonization Guidelines (see Appendix A), were provided to all participants.

The PBMC samples tested included a range of frequencies of antigen-specific T cells, from about 0.08 % MHC multimer+ CD8+ cells of CD8+ cells ("Low responder") to about 0.89 % MHC multimer+ CD8+ cells of CD8+ cells ("High responder").

Prior to the shipping of the PBMC samples, they were pretested, in order to verify the uniformity of the cell samples. Thus, the MHC Multimer Proficiency Panel assay was performed on a total of 6 vials, 3 vials from each PBMC batch, using the 4 MHC multimer specificities provided including a negative MHC multimer control. No variability was observed in the cell sample vials from same batch with respect to cell viability and frequencies of antigen-specific T cells (data not shown).
ANALYSES PERFORMED BY THE PARTICIPANTS

Each participant received instructions for carrying out the proficiency test; see Instructions (Appendix 1).

The participants were asked to report back the following experimental data for the 2 PBMC samples (2010113563 and 2010113564) from the final flow cytometry plots:

- Number of CD8+ cells
- Number of CMV epitope 1-specific CD8+ cells (HLA-A*0201/NLVPMVATV for PBMC 2010113563)
- Number of CMV epitope 2-specific CD8+ cells (HLA-B*3501/IPSINVHHY for PBMC 2010113563)
- Number of FLU-specific CD8+ cells (HLA-A*0201/GILGFVFTL for PBMC 2010113564)
- Number of EBV-specific CD8+ cells (HLA-A*3501/HP-VGEADYFEY for PBMC 2010113564)
- Number of negative control multimer+ CD8+ cells
- From the reported number of CD8+ cells and multimer+ CD8+ cells for each measurement, the percentage of multimer+ CD8+ cells out of the total number of CD8+ cells were calculated and reported as the results

All analysis were made in duplicates.

PRESENTATION OF DATA

The results obtained are shown in Figures 1-4 and Appendixes 2-3.

The median of the results for each PBMC/multimer combination represents the “average value” for all the participants for that particular PBMC/multimer combination. The median of all the participants’ results for a particular PBMC/multimer combination was used to calculate the Relative Accuracy of a given participant's result.

The relative accuracy is calculated as the result obtained by a given participant, divided by the median of all participant’s results.

Any result from 1,5 times lower to 1,5 times higher than the median, corresponding to a relative accuracy of 0,66 – 1,5 is considered “in average range”.

Any results from 1,6 to 2,0 times higher than the median, corresponding to a relative accuracy of 1,6 – 2,0, and any result from 0,50 to 0,65 times lower than the median, corresponding to a relative accuracy of 0,50 – 0,65, is considered “near the average range”.
Any result below or above 2,0 times the median, corresponding to a relative accuracy below 0,50 and above 2,0 is considered “far from average”.

PROFICIENCY TESTING RESULTS

The results obtained by the 18 participants of the MHC Multimer Proficiency Panel 2018 are shown in Figure 1-4 and Appendixes 2-3.

Each of Figures 1-4 has an upper and lower panel.

The upper panel shows the percentage of antigen-specific cells (red diamonds), and the percentage of negative control multimer+ cells, i.e. background staining found (black diamonds) for each participating lab. The data are presented in the order of increasing Lab ID from left to right.

The lower panel shows the relative accuracy, defined as percentage of antigen-specific cells determined by a given participant, divided by the median percentage of antigen-specific cells determined by all the participants. Relative accuracies of 0,66 – 1,5 are considered “in average range” and are represented by filled black columns; relative accuracies of 0,50 – 0,65 or 1,6 – 2,0 are considered “near average” and are represented by hatched columns; relative accuracies below 0,50 or above 2,0 are considered “far from average” and are represented by open columns. The data are presented in the order of increasing relative accuracy from left to right. A relative accuracy of 1,0 indicates full agreement with the “average” result.
Figure 1: CMV epitope 1-specific cells of PBMC 2010113563. Percentage of CMV epitope 1-specific CD8+ cells of total CD8+ cells, determined by the 18 participants.

Upper panel: Duplicate measurements of the percentage of CMV epitope 1-specific CD8+ cells (red diamonds) and the percentage of negative control multimer+ CD8+ cells (black diamonds). The median value (0.30 %) for the CMV epitope 1-specific CD8+ cells is indicated with a black horizontal line.

Lower panel: Relative accuracy for the measurement of CMV epitope 1-specific CD8+ cells.
Figure 2: CMV epitope 2-specific cells of PBMC 2010113563. Percentage of CMV epitope 2-specific CD8+ cells of total CD8+ cells, determined by the 18 participants.

Upper panel: Duplicate measurements of the percentage of CMV epitope 2-specific CD8+ cells (red diamonds) and the percentage of negative control multimer+ CD8+ cells (black diamonds). The median value (0.89%) for the CMV epitope 2-specific CD8+ cells is indicated with a black horizontal line.

Lower panel: Relative accuracy for the measurement of CMV epitope 2-specific CD8+ cells.
Figure 3: FLU-specific cells of PBMC 2010113564. Percentage of FLU-specific CD8\(^+\) cells of total CD8\(^+\) cells, determined by the 18 participants.

Upper panel: Duplicate measurements of the percentage of FLU-specific CD8\(^+\) cells (red diamonds) and the percentage of negative control multimer\(^+\) CD8\(^+\) cells (black diamonds). The median value (0.08\%) for the FLU-specific CD8\(^+\) cells is indicated with a black horizontal line.

Lower panel: Relative accuracy for the measurement of FLU-specific CD8\(^+\) cells.
Figure 4: EBV-specific cells of PBMC 2010113564. Percentage of EBV-specific CD8$^+$ cells of total CD8$^+$ cells, determined by the 18 participants.

Upper panel: Duplicate measurements of the percentage of EBV-specific CD8$^+$ cells (red diamonds) and the percentage of negative control multimer$^+$ CD8$^+$ cells (black diamonds). The median value (0.63 %) for the EBV-specific CD8$^+$ cells is indicated with a black horizontal line.

Lower panel: Relative accuracy for the measurement of EBV-specific CD8$^+$ cells.
OVERALL PROFICIENCY

In order to describe the Overall Proficiency of each participating laboratory in enumerating the MHC multimer+ CD8+ cells, a score was assigned to each laboratory for each of the 4 measurements performed. The score “3” was assigned to results in the average range (i.e. Relative Accuracy between 0.66 and 1.5), the score “2” was assigned to results near average (i.e. Relative Accuracy 0.50 – 0.65 or 1.6 – 2.0), and finally, the score “1” was assigned to results far from average (i.e. Relative Accuracy below 0.50 or above 2.0).

Overall Proficiency is defined as the average score obtained over the four measurements. Thus, a laboratory with an overall proficiency of “3” is in average range on all four measurements and has the highest possible score, and a laboratory with an average score of “1” is far from average on all four measurements and has the lowest possible score.

Figure 5: Overall Proficiency. The laboratories’ proficiency in performing the MHC multimer measurements is shown. An Overall Proficiency of ”3” represents the highest possible Overall Proficiency score; an Overall Proficiency of ”1” represents the lowest possible Overall Proficiency score. A score of ”3” indicates that this laboratory was ”in average” on all four measurements performed. A score of ”1” indicates that this laboratory was ”far from average” on all four measurements performed.
ACKNOWLEDGEMENTS

We thank Cryoport for sponsoring shipping and temperature logger expenses at a reduced price. www.cryoport.com
ABOUT IMMUDEX

Based in Copenhagen, Denmark, with North American operations based in Fairfax, Virginia, Immudex manufactures MHC Dextramer® reagents for the detection of antigen-specific T cells. Under an agreement with the US Cancer Immunotherapy Consortium (CIC) and the European Cancer Immunotherapy Consortium (CIMT), Immudex also provides MHC Multimer and Elispot proficiency panel services worldwide.

Immudex’s MHC Dextramer® products are utilized for the quantification or sorting of antigen-specific T cells in life science research, in vitro diagnostics, as well as the development of immunotherapeutics and vaccines. The primary focus is research-use-only products for the immune monitoring of immunotherapy development, and monitoring of CMV cellular immunity in transplant and other immune-deficient patients. In Europe, the CE-marked Dextramer® CMV Kit is approved for *in vitro* diagnostic use, for the quantification of CMV-specific T cells. USA FDA 510(k) clearance for the CMV kit was granted March 2017. GMP Grade reagents are available.

Our dCODE™ Dextramer® reagents enable massive multiplexing of antigen-specific T-cell detection. To date, we have achieved detection of over 1000 CD8⁺ T-cell specificities from a single blood sample. To find out more about how Immudex is improving immune monitoring please visit us at www.immudex.com. To learn more about proficiency panel participation email proficiencypanel@immudex.com.

Figure 6: Schematic drawing of the MHC Dextramer® and the conventional MHC multimers binding to T-cell receptors (TCRs) on the surface of a T cell. MHC Dextramer® reagents are fluorescent labeled MHC multimers that can bind simultaneously to multiple TCRs on a single T cell. This provides a strong and stable interaction between the MHC Dextramer® and the T cell, enabling detection of antigen-specific T cells with low affinity for the MHC-peptide complex.
APPENDIX 1: INSTRUCTIONS FOR THE MHC MULTIMER PROFICIENCY PANEL 2018

General Introduction to the MHC Multimer panel

All participants will receive two pre-tested PBMC donor samples. All participants must determine the percentage of CMV-, FLU- and EBV-specific T cells for both donor samples using predefined MHC Multimer reagents. Analyses are done by flow cytometry.

PLEASE READ ALL THE BELOW INSTRUCTIONS CAREFULLY BEFORE THAWING AND STAINING THE CELLS.

If you have any questions, please contact the organizer:

Katrine Frederiksen
Coordinator of MHC Multimer Proficiency Panel
e-mail: ProficiencyPanel@immudex.com
P: +45 3917 9783

Materials and Reagents:

Each participant receives 2 vials each comprising a donor sample, and named PBMC 2010113563 and PBMC 2010113564, respectively. Each vial contains 1.5ml, 1 x 10^7 PBMCs. Please store samples in liquid nitrogen upon arrival.

MHC Multimer reagents needed for analysis:

- CMV HLA-A*0201/NLVPMVATV MHC Multimer
- CMV HLA-B*3501/IPSINVHHY MHC Multimer
- FLU HLA-A*0201/GILGFVFTL MHC Multimer
- EBV HLA-B*3501/HPVGEADYFEY MHC Multimer
- Negative Control MHC Multimer

Participants who requested MHC Dextramer® reagents will receive the following 5 PE-labeled Dextramers:

- WB2132-PE HLA-A*0201/NLVPMVATV MHC Dextramer 10 tests
- WK2138-PE HLA-B*3501/IPSINVHHY MHC Dextramer 10 tests
- WB2161-PE HLA-A*0201/GILGFVFTL MHC Dextramer 10 tests
- WK2145-PE HLA-B*3501/HPVGEADYFEY MHC Dextramer 10 tests
- WB2666-PE Neg. Control MHC Dextramer 15 tests

Dextramers should be stored in the dark at 2-8°C until use.
Overview of Required Staining reactions:

Each participant must perform a total of 12 analysis, corresponding to 6 analyses on each of the 2 supplied donor samples (PBMC 2010113563 and PBMC 2010113564).

Analyze the 2 supplied donor samples as follows:

PBMC-2010113563
- Negative control; staining with Negative control MHC Multimer.
- Measurement of CMV-specific CD8⁺ T cells using CMV (HLA-A*0201/NLVPMVATV) MHC Multimer.
- Measurement of CMV-specific CD8⁺ T cells using CMV (HLA-B*3501/IPSINVHHY) MHC Multimer.

PBMC-2010113564
- Negative control; staining with Negative control MHC Multimer.
- Measurement of FLU-specific CD8⁺ T cells using FLU (HLA-A*0201/GILGFVFTL) MHC Multimer.
- Measurement of EBV-specific CD8⁺ T cells using EBV (HLA-B*3501/HPVGEADYFEY) MHC Multimer.

All analyses are made in duplicates and should in addition to MHC Multimers include anti-CD8 antibody and relevant antibody marker(s) useful for exclusion or inclusion of specific cell population (e.g. anti-CD4 antibody, anti-CD3 antibody, or DEAD cell dyes) during data analysis.

Below is a table with an overview of the required analysis. Indicated staining ID’s must be used for naming of fcs files and for reporting results of the proficiency panel.

<table>
<thead>
<tr>
<th>Staining ID</th>
<th>Donor sample</th>
<th>MHC Multimer</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1-113563-Neg</td>
<td>PBMC-2010113563</td>
<td>Negative control</td>
</tr>
<tr>
<td>R2-113563-Neg</td>
<td>PBMC-2010113563</td>
<td>Negative control</td>
</tr>
<tr>
<td>R3-113563-CMV1</td>
<td>PBMC-2010113563</td>
<td>CMV (A0201/NLVPMVATV)</td>
</tr>
<tr>
<td>R4-113563-CMV1</td>
<td>PBMC-2010113563</td>
<td>CMV (A0201/NLVPMVATV)</td>
</tr>
<tr>
<td>R5-113563-CMV2</td>
<td>PBMC-2010113563</td>
<td>CMV (B3501/IPSINVHHY)</td>
</tr>
<tr>
<td>R6-113563-CMV2</td>
<td>PBMC-2010113563</td>
<td>CMV (B3501/IPSINVHHY)</td>
</tr>
<tr>
<td>R7-113564-Neg</td>
<td>PBMC-2010113564</td>
<td>Negative control</td>
</tr>
<tr>
<td>R8-113564-Neg</td>
<td>PBMC-2010113564</td>
<td>Negative control</td>
</tr>
<tr>
<td>R9-113564-FLU</td>
<td>PBMC-2010113564</td>
<td>FLU (A0201/GILGFVFTL)</td>
</tr>
<tr>
<td>R10-113564-FLU</td>
<td>PBMC-2010113564</td>
<td>FLU (A0201/GILGFVFTL)</td>
</tr>
<tr>
<td>R11-113564-EBV</td>
<td>PBMC-2010113564</td>
<td>EBV (B3501/HPVGEADYFEY)</td>
</tr>
<tr>
<td>R12-113564-EBV</td>
<td>PBMC-2010113564</td>
<td>EBV (B3501/HPVGEADYFEY)</td>
</tr>
</tbody>
</table>
Instructions for cell preparation and staining

1) Thawing and Counting

Thaw both vials of donor sample. Count and record total cell number after thawing and the number of viable cells for each vial.

2) Staining

Please see Appendix: Multimer Harmonization Guidelines to Optimize Assay Performance

Use your own Standard Operating Procedure (SOP) for staining and gating of MHC multimer-specific CD8+ T cells.

In addition to the four virus-specific MHC, and the negative control Multimer reagents (indicated in the table overview above), the SOP must also include:

- Anti-CD8 antibody staining
- Optionally, additional marker(s) for exclusion or inclusion of specific cell population(s) (e.g. anti-CD4 antibody, anti-CD3 antibody, or dead cell dyes) can be included.

You are free to choose buffers, tubes, staining volume, incubation time, and use of dead cell markers in the assay. Record staining and washing conditions. You will have to perform the six staining reactions per donor outlined above, preferably collecting a minimum of 100,000 CD8+ T cells. In order to achieve this minimum, it is recommended that you stain at least 1.5 x 10^6 viable cells per staining.

Note: If using MHC Dextramer® reagents, please read the Staining Protocol that comes with the Dextramer® reagents. In particular, staining and incubation with Dextramer® reagents prior to addition of antibodies (anti-CD8, etc.) is essential for optimal staining of the antigen-specific T cells.

3) Data acquisition and analysis

All fcs files (flow data files) must be named exactly as described in the table above.

Your analysis must end with a dot plot showing the CD8-staining on the x-axis and the MHC Multimer staining on the y-axis, as exemplified below.
Example of dot plot showing CD8-staining and MHC Multimer staining:

Record results as follows:

- Number of CD8^+ T cells (number of events in gate R6, in the above example).
- Number of MHC multimer-positive T cells (number of events in gate R5 in the above example).
- Calculate the percentage of MHC multimer^+ T cells of total CD8^+ T cells (R5/R6x100 in above example). Record result with two decimals.

Reporting of data

1. Fill-in the "PowerPoint Dot plot" slide (sent by email to all participants) with your own dot plots and gating strategy.

2. Create a Zip file, name it with your Lab ID, and include the following files:
 a. The filled-in "PowerPoint Dot plot".
 b. The 12 fcs files, named as described in the table page 2
 c. If acquired, include your single-color compensation.

3. Proficiency data reporting
 a. Go to » Proficiency panel data reporting
 i. If prompt to, select your region
 b. Upload your data Zip file, as described
 c. Report Proficiency Panel Data (use link to » Data report form)
 i. Fill-in the survey as described.
Appendix A

Assay harmonization guidelines

Multimer Harmonization Guidelines to Optimize Assay Performance

A. Establish lab SOP for MHC peptide multimer staining:
 A1. Count at least 100,000 CD8\(^+\) T cells per staining.
 A2. Establish adequate measures to quantify non-specific binding of Multimer to CD8\(^+\) cells (e.g. irrelevant Multimer or autofluorescence).
 A3. Establish adequate measures to reduce the amount of non-specific binding of Multimer in the CD8\(^+\) population to allow accurate quantification (e.g. DUMP channel or DEAD cell dyes).

B. Establish SOP for software analyses of stained samples, including:
 B2. Rules to set the gates.

C. Establish a human auditing process of all final results:
 C1. Are all dot plots correctly compensated?
 C2. Have the gates been set correctly?
 C3. Are the reported frequencies of multimer-positive cells plausible?

D. Lab environment
 D1 Only let experienced personnel (per lab SOP) conduct assay.
APPENDIX 2: PBMC 2010113563 REPORTED NUMBERS

PBMC 2010113563, Negative control multimer (Neg)

PBMC 2010113563, CMV epitope 1-specific multimer

PBMC 2010113563, CMV epitope 2-specific multimer

% multimer$^+$ CD8$^+$ of CD8$^+$ cells and relative accuracy from data reported

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>R1-2010 113563-Neg %</th>
<th>R2-2010 113563-Neg %</th>
<th>R3-2010 113563-CMV1 %</th>
<th>R4-2010 113563-CMV1 %</th>
<th>2010113563-CMV1 Relative accuracy</th>
<th>R5-2010 113563-CMV2 %</th>
<th>R6-2010 113563-CMV2 %</th>
<th>2010113563-CMV2 Relative accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>702</td>
<td>0,00</td>
<td>0,00</td>
<td>0,39</td>
<td>0,39</td>
<td>1,3</td>
<td>1,15</td>
<td>1,15</td>
<td>1,3</td>
</tr>
<tr>
<td>703</td>
<td>0,00</td>
<td>0,00</td>
<td>0,20</td>
<td>0,20</td>
<td>0,66</td>
<td>0,38</td>
<td>0,46</td>
<td>0,47</td>
</tr>
<tr>
<td>704</td>
<td>0,00</td>
<td>0,00</td>
<td>0,06</td>
<td>0,07</td>
<td>0,21</td>
<td>0,19</td>
<td>0,18</td>
<td>0,21</td>
</tr>
<tr>
<td>705</td>
<td>0,00</td>
<td>0,00</td>
<td>0,39</td>
<td>0,38</td>
<td>1,3</td>
<td>1,05</td>
<td>1,09</td>
<td>1,2</td>
</tr>
<tr>
<td>706</td>
<td>0,00</td>
<td>0,00</td>
<td>0,32</td>
<td>0,36</td>
<td>1,1</td>
<td>1,06</td>
<td>0,88</td>
<td>1,1</td>
</tr>
<tr>
<td>707</td>
<td>0,00</td>
<td>0,00</td>
<td>0,47</td>
<td>0,49</td>
<td>1,6</td>
<td>1,39</td>
<td>1,43</td>
<td>1,6</td>
</tr>
<tr>
<td>708</td>
<td>0,00</td>
<td>0,00</td>
<td>0,30</td>
<td>0,32</td>
<td>1,0</td>
<td>0,93</td>
<td>0,97</td>
<td>1,1</td>
</tr>
<tr>
<td>709</td>
<td>0,00</td>
<td>0,00</td>
<td>0,31</td>
<td>0,30</td>
<td>1,0</td>
<td>0,59</td>
<td>0,52</td>
<td>0,62</td>
</tr>
<tr>
<td>710</td>
<td>0,00</td>
<td>0,00</td>
<td>0,24</td>
<td>0,24</td>
<td>0,79</td>
<td>0,71</td>
<td>0,71</td>
<td>0,80</td>
</tr>
<tr>
<td>712</td>
<td>0,00</td>
<td>0,00</td>
<td>0,19</td>
<td>0,20</td>
<td>0,64</td>
<td>0,64</td>
<td>0,53</td>
<td>0,66</td>
</tr>
<tr>
<td>713</td>
<td>0,00</td>
<td>0,00</td>
<td>0,30</td>
<td>0,29</td>
<td>0,98</td>
<td>0,77</td>
<td>0,82</td>
<td>0,90</td>
</tr>
<tr>
<td>714</td>
<td>0,00</td>
<td>0,00</td>
<td>0,31</td>
<td>0,34</td>
<td>1,1</td>
<td>0,92</td>
<td>1,00</td>
<td>1,1</td>
</tr>
<tr>
<td>715</td>
<td>0,00</td>
<td>0,00</td>
<td>0,30</td>
<td>0,30</td>
<td>1,0</td>
<td>0,86</td>
<td>0,87</td>
<td>1,0</td>
</tr>
<tr>
<td>716</td>
<td>0,00</td>
<td>0,00</td>
<td>0,17</td>
<td>0,16</td>
<td>0,55</td>
<td>0,32</td>
<td>0,29</td>
<td>0,34</td>
</tr>
<tr>
<td>717</td>
<td>0,00</td>
<td>0,00</td>
<td>0,37</td>
<td>0,35</td>
<td>1,2</td>
<td>1,10</td>
<td>1,06</td>
<td>1,2</td>
</tr>
<tr>
<td>718</td>
<td>0,00</td>
<td>0,00</td>
<td>0,29</td>
<td>0,31</td>
<td>1,0</td>
<td>0,90</td>
<td>0,91</td>
<td>1,0</td>
</tr>
<tr>
<td>719</td>
<td>0,00</td>
<td>0,00</td>
<td>0,26</td>
<td>0,26</td>
<td>0,86</td>
<td>0,78</td>
<td>0,78</td>
<td>0,88</td>
</tr>
<tr>
<td>720</td>
<td>0,00</td>
<td>0,00</td>
<td>0,34</td>
<td>0,37</td>
<td>1,2</td>
<td>1,03</td>
<td>1,04</td>
<td>1,2</td>
</tr>
</tbody>
</table>
APPENDIX 3: PBMC 2010113564 REPORTED NUMBERS

PBMC 2010113564, Negative control multimer (Neg)

PBMC 2010113564, FLU-specific multimer

PBMC 2010113564, EBV-specific multimer

% multimer+ CD8+ of CD8+ cells and relative accuracy from data reported

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>R7-2010 113564-Neg %</th>
<th>R8-2010 113564-Neg %</th>
<th>R9-2010 113564-FLU %</th>
<th>R10-2010 113564-FLU %</th>
<th>2010113564-FLU Relative accuracy</th>
<th>R11-2010 113564-EBV %</th>
<th>R12-2010 113564-EBV %</th>
<th>2010113564-EBV Relative accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>702</td>
<td>0,00</td>
<td>0,00</td>
<td>0,08</td>
<td>0,08</td>
<td>1,0</td>
<td>0,69</td>
<td>0,65</td>
<td>1,1</td>
</tr>
<tr>
<td>703</td>
<td>0,00</td>
<td>0,00</td>
<td>0,07</td>
<td>0,07</td>
<td>0,88</td>
<td>0,49</td>
<td>0,50</td>
<td>0,79</td>
</tr>
<tr>
<td>704</td>
<td>0,00</td>
<td>0,00</td>
<td>0,01</td>
<td>0,01</td>
<td>0,13</td>
<td>0,14</td>
<td>0,14</td>
<td>0,22</td>
</tr>
<tr>
<td>705</td>
<td>0,00</td>
<td>0,00</td>
<td>0,08</td>
<td>0,09</td>
<td>1,1</td>
<td>0,74</td>
<td>0,78</td>
<td>1,2</td>
</tr>
<tr>
<td>706</td>
<td>0,00</td>
<td>0,00</td>
<td>0,08</td>
<td>0,09</td>
<td>1,1</td>
<td>0,85</td>
<td>0,90</td>
<td>1,4</td>
</tr>
<tr>
<td>707</td>
<td>0,00</td>
<td>0,00</td>
<td>0,07</td>
<td>0,09</td>
<td>1,0</td>
<td>0,40</td>
<td>0,41</td>
<td>0,64</td>
</tr>
<tr>
<td>708</td>
<td>0,00</td>
<td>0,00</td>
<td>0,10</td>
<td>0,08</td>
<td>1,1</td>
<td>0,65</td>
<td>0,63</td>
<td>1,0</td>
</tr>
<tr>
<td>709</td>
<td>0,00</td>
<td>0,00</td>
<td>0,03</td>
<td>0,04</td>
<td>0,44</td>
<td>0,38</td>
<td>0,36</td>
<td>0,59</td>
</tr>
<tr>
<td>710</td>
<td>0,00</td>
<td>0,00</td>
<td>0,08</td>
<td>0,08</td>
<td>1,0</td>
<td>0,78</td>
<td>0,77</td>
<td>1,2</td>
</tr>
<tr>
<td>712</td>
<td>0,00</td>
<td>0,00</td>
<td>0,08</td>
<td>0,06</td>
<td>0,88</td>
<td>0,52</td>
<td>0,52</td>
<td>0,83</td>
</tr>
<tr>
<td>713</td>
<td>0,00</td>
<td>0,00</td>
<td>0,06</td>
<td>0,05</td>
<td>0,69</td>
<td>0,75</td>
<td>0,73</td>
<td>1,2</td>
</tr>
<tr>
<td>714</td>
<td>0,00</td>
<td>0,00</td>
<td>0,08</td>
<td>0,08</td>
<td>1,0</td>
<td>0,60</td>
<td>0,64</td>
<td>1,0</td>
</tr>
<tr>
<td>715</td>
<td>0,00</td>
<td>0,00</td>
<td>0,07</td>
<td>0,08</td>
<td>0,94</td>
<td>0,70</td>
<td>0,67</td>
<td>1,1</td>
</tr>
<tr>
<td>716</td>
<td>0,00</td>
<td>0,00</td>
<td>0,02</td>
<td>0,02</td>
<td>0,25</td>
<td>0,23</td>
<td>0,19</td>
<td>0,33</td>
</tr>
<tr>
<td>717</td>
<td>0,00</td>
<td>0,00</td>
<td>0,09</td>
<td>0,08</td>
<td>1,1</td>
<td>0,92</td>
<td>0,92</td>
<td>1,5</td>
</tr>
<tr>
<td>718</td>
<td>0,00</td>
<td>0,00</td>
<td>0,09</td>
<td>0,09</td>
<td>1,1</td>
<td>0,71</td>
<td>0,70</td>
<td>1,1</td>
</tr>
<tr>
<td>719</td>
<td>0,00</td>
<td>0,00</td>
<td>0,09</td>
<td>0,09</td>
<td>1,1</td>
<td>0,50</td>
<td>0,60</td>
<td>0,87</td>
</tr>
<tr>
<td>720</td>
<td>0,01</td>
<td>0,00</td>
<td>0,08</td>
<td>0,07</td>
<td>0,94</td>
<td>0,50</td>
<td>0,51</td>
<td>0,80</td>
</tr>
</tbody>
</table>