

Protocol for Preparation of MHC I-peptide monomer and fluorescent U-Load Dextramer[®] MHC I

Background easYmer[®] are highly active formulations of MHC I molecules, which can be used to generate specific MHC-peptide monomers by loading your own peptide of choice. The MHC-peptide monomers can easily be dextramerized with fluorescently labeled U-Load Dextramer[®] and used to detect antigen-specific CD8⁺ T cells in blood using flow cytometry. Optionally, the peptide-loaded monomers can be stored frozen at -20°C for later use. The easYmer[®] technology is highly flexible and suitable for screening of single epitopes in many samples or screening of large numbers of different epitopes in parallel. The easYmer[®] technology also allow evaluation of peptide binding to MHC I by assaying proper refolding of peptide loaded complexes.

Materials	easYmer [®]
required	U-Load Dextramer [®]
	Peptide
	DMSO (e.g., Sigma cat# D2650)
	ddH ₂ O

Preparation 1. Dilute Peptide (easYmer[®] Control Peptide or peptide of choice) to 100 μ M in ddH₂O. Keep on ice from this step.

peptide monomer

- To prepare easYmer[®] MHC-peptide monomer for dextramerization, mix the reagents in Table A according to the listed sequence in a 1.5 mL tube or 96well U-bottom plate. The listed amounts will be enough to make 10, 20, or 50 tests of U-Load Dextramer[®] MHC I.
- 3. Optional: To evaluate folding of peptide with MHC make a smaller volume of a positive and negative control, i.e., easYmer[®] loaded with the included control peptide and no peptide as listed in Table A.

Reagents	10 tests	20 tests	50 tests	Positive Control	Negative control
ddH ₂ O	26.5 µL	53 µL	132.5 µL	2.5 μL	3 µL
Peptide (100 µM)	3.5 µL	7 µL	17.5 µL	0.5 µL	-
easYmer [®] Loading Buffer	10 µL	20 µL	50 µL	3 µL	3 µL
easYmer [®] (3 µM)	20 µL	40 µL	100 µL	3 µL	3 µL
Total volume	60 µL	120 µL	300 µL	9 µL	9 µL

Table A

4. Mix by pipetting gently - be careful not to form bubbles.

- 5. Make a short clearing spin to collect all materials in the bottom of the tube and incubate at 18°C for 48 h.
- Make a short clearing spin to collect all material in the bottom of the tube. 1000 nM folded MHC-peptide monomer is now ready for further processing or placed at -20°C for long-term storage.

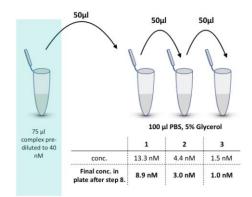
- 7. Proceed to step 8 to evaluate peptide binding or continue to dextramerization starting at step 9.
- To determine the efficiency of the easYmer[®] MHC-peptide folding take 3 μL of the prepared MHC-peptide monomer (1000 nM) and dilute to 500 nM by adding 3 μL of Loading buffer. Then follow the "Protocol for Flow cytometrybased assay of peptide- easYmer[®] MHC I complex formation" (page 3).
- **Preparation** 9. To dextramerize the peptide-loaded easYmer[®] MHC monomers (MHC-peptide monomer), mix the reagents in Table B in a 1.5 mL tube:

of U-Load Dextramer[®] MHC I

Table B

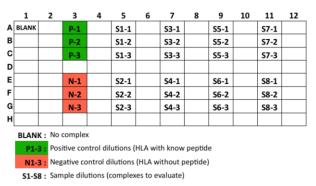
Reagents	10 tests	20 tests	50 tests		
MHC-peptide monomer (1 µM)	57 µL	114 µL	285 µL		
U-Load Dextramer [®]	20 µL	40 µL	100 µL		
(PE/FITC)					
incubate for 30 min at RT in the dark					
U-Load Dextramer [®]	23 µL	46 µL	115 µL		
Dilution Buffer					
Total volume	100 µL	200 µL	500 μL		
U-Load Dextramer [®] MHC I					

- 10. Store the fluorescent U-Load Dextramer $^{\ensuremath{\mathbb{R}}}$ MHC I reagents at 2-8°C in the dark until use.
- Flow To analyze antigen-specific CD8⁺ T cells in blood using flow cytometry follow the analysis "General staining procedure MHC Dextramer[®] – PBMC's". (https://www.immudex.com/resources/protocols/).

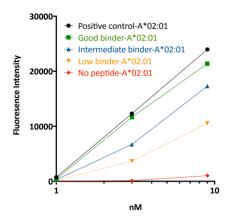


Flow cytometry-based assay of peptide-MHC I complex formation

Background After completed peptide loading of easYmer[®] monomer (step 8 in the protocol "Preparation of MHC I-peptide monomer and fluorescent U-Load Dextramer[®] MHC I"), proper folding of MHC-peptide monomers can be evaluated using the assay described in this procedure.


Procedure: evaluation of peptide-MHC I complex formation

- The MHC-peptide monomers to be assayed are prepared according to protocol: "Preparation of MHC I-peptide monomer and fluorescent U-Load Dextramer[®] MHC I". The peptide loading setup should include a positive control (provided with the easYmer[®]): a peptide that is known to support folding of the MHC molecule of interest, and a negative control: without peptide.
 - 2. Prepare sufficient dilution buffer (PBS, 5% glycerol) for the whole assay.
 - 3. Dilute each of the MHC-peptide monomers to give 75 μ L of a 40 nM solution (e.g., for a 500 nM complex: 6 μ L folded complex in 69 μ L dilution buffer).
 - 4. For all samples and positive and negative controls, transfer 50 μ L of this pre-dilution (prepared in step 3.) to the first tube. Make three subsequent serial 3-fold dilutions (50 μ L in 100 μ L dilution buffer), according to the figure below.


- 5. Transfer 40 μ L of each of these dilutions to the wells in a U-bottom shape 96-well plate, as suggested below. Also prepare a background well (BLANK): transfer 40 μ L of dilution buffer
- 6. Prepare a sufficient volume of a 45-fold dilution of the streptavidin-coated beads (6-8um; SVP-60-5) in dilution buffer. Transfer 20 μ L of the diluted bead suspension to each well.

- 7. Mix well and seal the plates with Sealing Tape to avoid well to well contamination.
- 8. Incubate the plate on a rocking table at 37°C for 1h.
- 9. Remove the Sealing Tape and wash by adding 160 μ L FACS buffer.
- 10. Spin the plate at 700xg for 3 min and flip out the supernatant.
- 11. Resuspend the beads in 200 µL FACS buffer.
- 12. Spin the plate at 700xg for 3 min and flip out the supernatant.
- 13. Wash two more times by repeating step 11. and 12.
- 14. During the above washing steps, prepare a 200-fold dilution of the PE-labeled anti-human β 2m monoclonal antibody BBM.1 in FACS buffer.
- 15. Resuspend the beads in 50 µL antibody solution per well.
- 16. Incubate the plate for 30 min at 4°C. Wash by adding 150 μ L FACS buffer. Spin the plate at 700g for 3 min and flip out the supernatant.
- 17. Resuspend the beads in 200 μL FACS buffer. Spin the plate at 700xg for 3 min and flip out the supernatant.
- 18. Wash two more times by repeating step 17. and 18.
- 19. Resuspend the beads in 200 μL FACS buffer and analyze on a Flow cytometer.

Example of the Flow cytometry-based assay:

Flow cytometry-based detection of 4 different peptide-HLA-A*02:01 monomers. MHCpeptide monomers of A*02:01 and 4 different peptides, and a negative control (No Peptide), were folded. CMV pp65 495-503 (NLVPMVATV) a known HLA-A*02:01 restricted epitope was used as positive control. The three other peptides are based on their A*02:01 binding stability categorized as good binder (T¹/₂ 6.5h), intermediate binder (T¹/₂ 3.5h), and low binder (T¹/₂ 0.7h). Three dilutions of the folded complexes were analysed in the flow cytometry-based assay. The X-axis gives the complex concentration if complete folding is achieved.