

Superior Detection of Self-Reactive, Antigen-Specific T-Cells using Klickmer[™] Compared to Tetramers

Dolton *et al.* Optimized Peptide–MHC Multimer Protocols for Detection and Isolation of Autoimmune T-Cells. Front. Immunol. (2018) 9: 1378.

BACKGROUND

MHC-peptide multimers have become the "gold standard" for the detection and isolation of antigen-specific T cells. Detection sensitivity is a general issue, but particularly pronounced for anticancer and autoimmune T cells. Self-reactive T-cell populations are often enriched for low-affinity T-cell receptors (TCR) due to the removal of high-affinity cells by immune tolerance mechanisms.

Here, Dolton *et al.* investigates how to optimize multimer staining using Klickmer^M or tetramer reagents for improved detection of autoreactive T-cells. Klickmer^M is a Dextramer[®] backbone with multiple acceptor sites for attachment of biotinylated molecules.

STUDY DESCRIPTION

Purified CD8⁺ T cells from a HLA A*0201⁺ type I diabetes patient were pre-treated with PKI dasatinib for up to 50 minutes at 37°C and stimulated with pancreatic β -cell-specific epitopes to create T-cell lines for the staining optimization. Thereafter, cells were washed with FACS buffer and mouse anti-PE unconjugated Antibody. To create autoreactive T-cell lines for the optimization study, the CD8⁺ T cells were then pulsed with peptides from insulin- β chain₁₀₋₁₈ (HLVEALYLV) or glutamate decarboxylase 65 (GAD65₁₁₄₋₁₂₃, VMNILLQYVV). The autoreactive T cell lines were then subjected to tetramer or KlickmerTM staining according to standard and the optimized protocol (**Fig. 1A**).

RESULTS

For detection of antigen-specific T cells, biotinylated peptides were conjugated onto Klickmer[™] reagent at molar ratio of 4:1 and 3:1. T cells were stained with antigen-specific tetramer or Klickmer[™] reagent using an optimized protocol. Optimized Klickmer[™] staining extended the TCR affinity threshold amenable to multimer staining and increased the size of the detected population by over a 10-fold compared to the optimized tetramer staining. Thereby, the optimized Klickmer[™] staining vastly outperformed the optimized tetramer staining (**Fig. 1B**).

Fig. 1: Detection of preproinsulin (PPI) Tcells is further improved using Klickmer[™] reagents under optimal staining conditions.

A Schematic representation of tetramers and Klickmer[™] reagents as illustrated by Dolton *et al.* 2018.

B T cells were also stained with irrelevant peptides as negative control or PPI tetramers (upper panel) and Klickmer[™] reagents (lower panel) using standard and optimal protocols (PKI + anti-PE Ab). The percentage of cells residing in each gate is shown. The red box indicates tetramer or Klickmer[™] detected cells.

CONCLUSIONS

- The application of Klickmer[™] reagents extended the TCR affinity threshold amenable to MHCpeptide multimer staining, ensuring clear recovery of the self-reactive, antigen-specific T-cells from patient samples by flow cytometry
- Klickmer[™] further increased the size of the detected population by over 10-fold compared to tetramer staining enabling a higher recovery of the antigen-specific autoimmune T-cells.