

Protocol for Preparation of MHC I-Peptide Monomer and Fluorescent U-Load dCODE Dextramer® MHC I reagents

Background

easYmer® are highly active formulations of MHC I molecules, which can be used to generate specific MHC-peptide monomers by loading your own peptide of choice. The MHC-peptide monomers can easily be dextramerized with U-Load dCODE Dextramer® and used for profiling and quantification of antigen-specific T cells in cell sample. The U-Load dCODE Dextramer® reagent is a DNA barcode labelled Dextramer backbone with a unique barcode label for each specificity. U-Load dCODE Dextramer® reagent comes with labels applicable for different applications:

- U-Load dCODE Dextramer® (RiO) for multi-omics analysis of antigenspecific T cells, compatible with BD's Rhapsody single cell analysis platform
- U-Load dCODE Dextramer[®] (10x) for multi-omics analysis of antigenspecific T cells, compatible with 10x Chromium Single Cell Gene Expression system
- U-Load dCODE Dextramer® (HiT) for epitope discovery, neoantigen screening, designed for multiplexing using PCR and NGS,

The easYmer® and U-Load Dextramer® technologies are highly flexible and suitable for screening of single epitopes in many samples or screening of large numbers of different epitopes in parallel.

The easYmer® technology also allow evaluation of peptide binding to MHC I by assaying proper refolding of peptide loaded complexes.

Materials required

easYmer®

U-Load dCODE Dextramer® (RiO, 10x, HiT)

Peptide

DMSO (e.g., Sigma cat# D2650)

ddH₂O

Preparation of MHC-peptide monomer

- 1. Dilute Peptide (easYmer $^{\odot}$ Control Peptide or peptide of choice) to 100 μ M in ddH₂O. Keep on ice from this step.
- 2. To prepare easYmer[®] MHC-peptide monomer for dextramerization, mix the reagents in Table A according to the listed sequence in a 1.5 mL tube or 96-well U-bottom plate. The listed amounts will be enough to make 10, 20, or 50 tests of U-Load dCODE Dextramer[®] MHC I reagent.
- 3. Optional: To evaluate folding of peptide with MHC make a smaller volume of a positive and negative control, i.e., easYmer® loaded with the included control peptide and no peptide as listed in Table A.

Table A

Reagents	10 tests	20 tests	50 tests	Positive Control	Negative control
ddH₂O	3 µL	6 µL	15 μL	2.5 μL	3 µL
Peptide (100 µM)	2 µL	4 μL	10 μL	0.5 μL	-
easYmer [®] Loading Buffer	5 μL	10 µL	25 μL	3 μL	3 μL
easYmer® (3 μM)	20 μL	40 μL	100 μL	3 µL	3 μL

For research use only. Not for use in diagnostic or the rapeutic procedures. $\label{eq:constraint}$

Total volume	30 µL	60 μL 150 μL		9 μL	9 uL
Total Volume	30 μL	OOμL	130 pL	JμL	JμL

- 4. Mix by pipetting gently be careful not to form bubbles.
- 5. Make a short clearing spin to collect all materials in the bottom of the tube and incubate at 18°C for 48 h.
- 6. Make a short clearing spin to collect all material in the bottom of the tube. 2000 nM folded MHC-peptide monomer is now ready for further processing or placed at -20°C for long-term storage.
- 7. Proceed to step 8 to evaluate peptide binding or continue to dextramerization starting at step 9.
 - To determine the efficiency of the easYmer[®] MHC-peptide folding take 2 μ L of the prepared MHC-peptide monomer (2000 nM) and dilute to 500 nM by adding 6 μ L of Loading buffer. Then follow the "Protocol for Flow cytometry-based assay of peptide- easYmer[®] MHC I complex formation" (page 3).

Preparation of U-Load dCODE Dextramer® MHC I

8. To dextramerize the peptide-loaded easYmer® MHC monomers (MHC-peptide monomer) with U-Load dCODE Dextramer® reagent, mix the reagents in Table B in a 1.5 mL tube:

Table B

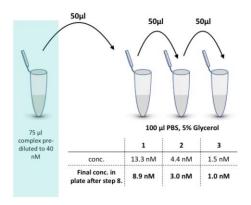
Reagents	10 tests	20 tests	50 tests					
MHC-peptide monomer (2 μM)	27 µL	54 µL	135 μL					
U-Load dCODE Dextramer®	12 µL	24 µL	60 µL					
incubate for	incubate for 30 min at RT in the dark							
U-Load dCODE Dextramer®	11 µL	22 µL	55 μL					
Dilution Buffer								
Total volume	50 μL	100 µL	250 μL					
U-Load dCODE Dextramer® MHC I								

9. Store the fluorescent DNA barcode labelled U-Load dCODE Dextramer® MHC I reagents at 2-8°C in the dark until use. 5 μ L per test is recommended for staining of 1-10 \times 10⁶ PBMC.

Analysis of antigenspecific T cells Antigen-specific T cells can be analyzed on three sequencing platforms:

- U-Load dCODE Dextramer[®] (HiT) for epitope discovery, neoantigen screening and immune monitoring follow the protocol "dCODE Dextramer[®] (HiT) Package Insert"
- U-Load dCODE Dextramer[®] (10x) for multi-omics analysis of antigenspecific T cells and TCR sequencing using 10x Chromium Single Cell Gene Expression follow the protocol "dCODE Dextramer[®] (10x compatible) Staining Protocol"
- U-Load dCODE Dextramer[®] (RiO) for multi-omics analysis of antigenspecific T cells and gene expression profiling using the BD Rhapsody[™] Single-Cell Analysis System follow the protocol "dCODE Dextramer[®] (RiO) Package Insert" (https://www.immudex.com/resources/protocols/)

For research use only. Not for use in diagnostic or the rapeutic procedures.


Flow Cytometry-Based Assay of Peptide-MHC I Complex Formation

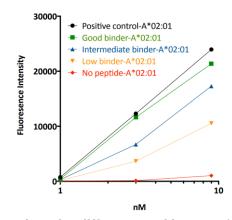
Background

After completed peptide loading of easYmer® monomer (step 8 in the protocol "Preparation of MHC I-peptide monomer and fluorescent U-Load Dextramer® MHC I"), proper folding of MHC-peptide monomers can be evaluated using the assay described in this procedure.

Procedure: evaluation of peptide-MHC I complex formation

- 1. The MHC-peptide monomers to be assayed are prepared according to protocol: "Preparation of MHC I-peptide monomer and fluorescent U-Load Dextramer® MHC I". The peptide loading setup should include a positive control (provided with the easYmer®): a peptide that is known to support folding of the MHC molecule of interest, and a negative control: without peptide.
- 2. Prepare sufficient dilution buffer (PBS, 5% glycerol) for the whole assay.
- 3. Dilute each of the MHC-peptide monomers to give 75 μ L of a 40 nM solution (e.g., for a 500 nM complex: 6 μ L folded complex in 69 μ L dilution buffer).
- 4. For all samples and positive and negative controls, transfer 50 μ L of this pre-dilution (prepared in step 3.) to the first tube. Make three subsequent serial 3-fold dilutions (50 μ L in 100 μ L dilution buffer), according to the figure below.

- 5. Transfer 40 μ L of each of these dilutions to the wells in a U-bottom shape 96-well plate, as suggested below. Also prepare a background well (BLANK): transfer 40 μ L of dilution buffer
- 6. Prepare a sufficient volume of a 45-fold dilution of the streptavidin-coated beads (6-8um; SVP-60-5) in dilution buffer. Transfer 20 μ L of the diluted bead suspension to each well.


For research use only. Not for use in diagnostic or the rapeutic procedures. $\label{eq:condition}$

	1	2	3	4	5	6	7	8	9	10	11	12
Α	BLANK		P-1		S1-1		S3-1		S5-1		S7-1	
В			P-2		S1-2		S3-2		S5-2		S7-2	
С			P-3		S1-3		S3-3		S5-3		S7-3	
D												
Ε			N-1		S2-1		S4-1		S6-1		S8-1	
F			N-2		S2-2		54-2		S6-2		S8-2	
G			N-3		S2-3		S4-3		S6-3		S8-3	
Н												
	BLANK: No complex											
	P1-3: Positive control dilutions (HLA with know peptide											
	N1-3: Negative control dilutions (HLA without peptide)											
	S1-S8: Sample dilutions (complexes to evaluate)											

- 7. Mix well and seal the plates with Sealing Tape to avoid well to well contamination.
- 8. Incubate the plate on a rocking table at 37°C for 1h.
- 9. Remove the Sealing Tape and wash by adding 160 µL FACS buffer.
- 10. Spin the plate at 700xg for 3 min and flip out the supernatant.
- 11. Resuspend the beads in 200 µL FACS buffer.
- 12. Spin the plate at 700xg for 3 min and flip out the supernatant.
- 13. Wash two more times by repeating step 11. and 12.
- 14. During the above washing steps, prepare a 200-fold dilution of the PE-labeled anti-human $\beta 2m$ monoclonal antibody BBM.1 in FACS buffer.
- 15. Resuspend the beads in 50 μL antibody solution per well.
- 16. Incubate the plate for 30 min at 4°C. Wash by adding 150 μ L FACS buffer. Spin the plate at 700g for 3 min and flip out the supernatant.
- 17. Resuspend the beads in 200 μ L FACS buffer. Spin the plate at 700xg for 3 min and flip out the supernatant.
- 18. Wash two more times by repeating step 17. and 18.
- 19. Resuspend the beads in 200 μL FACS buffer and analyze on a Flow cytometer.

Example of the Flow cytometry-based assay:

Flow cytometry-based detection of 4 different peptide-HLA-A*02:01 monomers. MHC-peptide monomers of A*02:01 and 4 different peptides, and a negative control (No Peptide), were folded. CMV pp65 495-503 (NLVPMVATV) a known HLA-A*02:01 restricted epitope was used as positive control. The three other peptides are based on their A*02:01 binding stability categorized as good binder (T½ 6.5h), intermediate binder (T½ 3.5h), and low binder (T½ 0.7h). Three dilutions of the folded complexes were analysed in the flow cytometry-based assay. The X-axis gives the complex concentration if complete folding is achieved.

For research use only. Not for use in diagnostic or the rapeutic procedures.