Publications

Please find a selection of publications from Immudex' customers organized according to the Dextramer® product used and the research area of interest:

MHC Dextramer® Reagents

Autoimmunity

  1. Krishnan B, et al. Branched chain α-ketoacid dehydrogenase kinase 111-130, a T cell epitope that induces both autoimmune myocarditis and hepatitis in A/J mice. Immun Inflamm Dis. 2017;5(4):421-434.

  2. Jia T, et al. Association of Autophagy in the Cell Death Mediated by Dihydrotestosterone in Autoreactive T Cells Independent of Antigenic Stimulation [published correction appears in J Neuroimmune Pharmacol. 2016 Mar;11(1):227-8]. J Neuroimmune Pharmacol. 2015;10(4):620-634.

  3. Citro A, et al. CD8+ T Cells Specific to Apoptosis-Associated Antigens Predict the Response to Tumor Necrosis Factor Inhibitor Therapy in Rheumatoid Arthritis. PLoS One. Published 2015 Jun 10. 2015;10(6):e0128607.

  4. Massilamany C, et al. Direct staining with major histocompatibility complex class II dextramers permits detection of antigen-specific, autoreactive CD4 T cells in situ. PLoS One. Published 2014 Jan 27. 2014;9(1):e87519.

Cancer

  1. Hughes E, Lauder SN, Smart K, et al. Primary breast tumours but not lung metastases induce protective anti-tumour immune responses after Treg-depletion [published online ahead of print, 2020 May 23]. Cancer Immunol Immunother. 2020;10.1007/s00262-020-02603-x. 

  2. Stadtmauer EA, et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020;367(6481):eaba7365.

  3. Lynn GM, et al. Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat Biotechnol. 2020;38(3):320-332.

  4. Clifton GT, et al. Results of a Randomized Phase IIb Trial of Nelipepimut-S + Trastuzumab versus Trastuzumab to Prevent Recurrences in Patients with High-Risk HER2 Low-Expressing Breast Cancer. Clin Cancer Res. 2020;26(11):2515-2523.

  5. Capietto AH, et al. Mutation position is an important determinant for predicting cancer neoantigens. J Exp Med. 2020;217(4):e20190179.

  6. Gemta LF, et al. Impaired enolase 1 glycolytic activity restrains effector functions of tumor-infiltrating CD8+ T cells. Sci Immunol. 2019;4(31):eaap9520.

  7. Westdorp H, et al. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. J Immunother Cancer. Published 2019 Nov 14. 2019;7(1):302.

  8. de Goeje PL, et al. Autologous Dendritic Cell Therapy in Mesothelioma Patients Enhances Frequencies of Peripheral CD4 T Cells Expressing HLA-DR, PD-1, or ICOS. Front Immunol. Published 2018 Sep 7. 2018;9:2034.

  9. Sartorius R, et al. Vectorized Delivery of Alpha-GalactosylCeramide and Tumor Antigen on Filamentous Bacteriophage fd Induces Protective Immunity by Enhancing Tumor-Specific T Cell Response. Front Immunol. Published 2018 Jun 28. 2018;9:1496.

  10. Formenti SC, et al. Focal Irradiation and Systemic TGFβ Blockade in Metastatic Breast Cancer. Clin Cancer Res. 2018;24(11):2493-2504.

  11. Kim HD, et al. Association Between Expression Level of PD1 by Tumor-Infiltrating CD8+ T Cells and Features of Hepatocellular Carcinoma. Gastroenterology. 2018;155(6):1936-1950.e17.

  12. Kato T, et al. Effective screening of T cells recognizing neoantigens and construction of T-cell receptor-engineered T cells. Oncotarget. Published 2018 Jan 13. 2018;9(13):11009-11019.

  13. Dammeijer F, et al. Depletion of Tumor-Associated Macrophages with a CSF-1R Kinase Inhibitor Enhances Antitumor Immunity and Survival Induced by DC Immunotherapy. Cancer Immunol Res. 2017;5(7):535-546.

  14. Matsushita M, et al. CXorf48 is a potential therapeutic target for achieving treatment-free remission in CML patients. Blood Cancer J. Published 2017 Sep 1. 2017;7(9):e601.

  15. Bethune MT, et al. Preparation of peptide-MHC and T-cell receptor dextramers by biotinylated dextran doping. Biotechniques. Published 2017 Mar 1. 2017;62(3):123-130.

  16. Mastaglio S, et al. NY-ESO-1 TCR single edited stem and central memory T cells to treat multiple myeloma without graft-versus-host disease. Blood. 2017;130(5):606-618.

  17. Fenstermaker RA, et al. Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma. Cancer Immunol Immunother. 2016;65(11):1339-1352.

  18. Tran T, et al. A Therapeutic Her2/neu Vaccine Targeting Dendritic Cells Preferentially Inhibits the Growth of Low Her2/neu-Expressing Tumor in HLA-A2 Transgenic Mice. Clin Cancer Res. 2016;22(16):4133-4144. 

  19. Sandri S, et al. Feasibility of Telomerase-Specific Adoptive T-cell Therapy for B-cell Chronic Lymphocytic Leukemia and Solid Malignancies. Cancer Res. 2016;76(9):2540-2551.

  20. Ma Q, et al. A novel TCR-like CAR with specificity for PR1/HLA-A2 effectively targets myeloid leukemia in vitro when expressed in human adult peripheral blood and cord blood T cells. Cytotherapy. 2016;18(8):985-994. 

  21. Riabov V, et al. Anti-tumor effect of the alphavirus-based virus-like particle vector expressing prostate-specific antigen in a HLA-DR transgenic mouse model of prostate cancer. Vaccine. 2015;33(41):5386-5395.

  22. Japp AS, et al. Dysfunction of PSA-specific CD8+ T cells in prostate cancer patients correlates with CD38 and Tim-3 expression. Cancer Immunol Immunother. 2015;64(11):1487-1494.

  23. Dolton G, et al. Comparison of peptide-major histocompatibility complex tetramers and dextramers for the identification of antigen-specific T cells. Clin Exp Immunol. 2014;177(1):47-63. 

  24. Litterman AJ, et al. Profound impairment of adaptive immune responses by alkylating chemotherapy. J Immunol. 2013;190(12):6259-6268.

  25. Aruga A, et al. Long-term Vaccination with Multiple Peptides Derived from Cancer-Testis Antigens Can Maintain a Specific T-cell Response and Achieve Disease Stability in Advanced Biliary Tract Cancer. Clin Cancer Res. 2013;19(8):2224-2231.

  26. Höchst B, et al. Liver sinusoidal endothelial cells contribute to CD8 T cell tolerance toward circulating carcinoembryonic antigen in mice. Hepatology. 2012;56(5):1924-1933.

  27. Sawada Y, et al. Phase I trial of a glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma: immunologic evidence and potential for improving overall survival. Clin Cancer Res. 2012;18(13):3686-3696.

  28. Hillerdal V, et al. T cells engineered with a T cell receptor against the prostate antigen TARP specifically kill HLA-A2+ prostate and breast cancer cells. Proc Natl Acad Sci U S A. 2012;109(39):15877-15881.

  29. Sørensen RB, et al. Efficient tumor cell lysis mediated by a Bcl-X(L) specific T cell clone isolated from a breast cancer patient. Cancer Immunol Immunother. 2007;56(4):527-533. 

Melanoma

  1. Sahin U, Oehm P, Derhovanessian E, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma [published online ahead of print, 2020 Jul 29]. Nature. 2020;10.1038/s41586-020-2537-9. 

  2. Spindler MJ, et al. Massively parallel interrogation and mining of natively paired human TCRαβ repertoires. Nat Biotechnol. 2020;38(5):609-619.

  3. Santos PM, et al. Impact of checkpoint blockade on cancer vaccine-activated CD8+ T cell responses. J Exp Med. 2020;217(7):e20191369.

  4. Kim KH, et al. PD-1 blockade-unresponsive human tumor-infiltrating CD8+ T cells are marked by loss of CD28 expression and rescued by IL-15 [published online ahead of print, 2020 Apr 24]. Cell Mol Immunol. 2020;10.1038/s41423-020-0427-6. 

  5. Benveniste PM, et al. In vitro-generated MART-1-specific CD8 T cells display a broader T-cell receptor repertoire than ex vivo naïve and tumor-infiltrating lymphocytes. Immunol Cell Biol. 2019;97(4):427-434.

  6. Kwiatkowska-Borowczyk E, et al. Whole cell melanoma vaccine genetically modified to stem cells like phenotype generates specific immune responses to ALDH1A1 and long-term survival in advanced melanoma patients. Oncoimmunology. Published 2018 Aug 24. 2018;7(11):e1509821.

  7. Lutz M, et al. Boost and loss of immune responses against tumor-associated antigens in the course of pregnancy as a model for allogeneic immunotherapy. Blood. 2015;125(2):261-272.

  8. Wang S, et al. A novel MHC- dextramer assay to identify melanoma antigen-specific CD8+ T cells from solid tumor disaggregates and matched peripheral blood. J. immunotherapy cancer 3, P109 (2015).

  9. Uzana R, et al. Trogocytosis is a gateway to characterize functional diversity in melanoma-specific CD8+ T cell clones. J Immunol. 2012;188(2):632-640.

  10. Baek Sørensen R, et al. Melanoma inhibitor of apoptosis protein (ML-IAP) specific cytotoxic T lymphocytes cross-react with an epitope from the auto-antigen SS56. J Invest Dermatol. 2009;129(8):1992-1999.

  11. Machlenkin A, et al. Capture of tumor cell membranes by trogocytosis facilitates detection and isolation of tumor-specific functional CTLs. Cancer Res. 2008;68(6):2006-2013.

Cytomegalovirus (CMV)

  1. Chen GL, Wallace PK, Zhang Y, et al. Low-level Cytomegalovirus Antigenemia Promotes Protective Cytomegalovirus Antigen Specific T-Cells after Allogeneic Hematopoietic Cell Transplantation [published online ahead of print, 2020 Jul 25]. Biol Blood Marrow Transplant. 2020;S1083-8791(20)30457-2. 

  2. Luo XH, et al. Generation of high-affinity CMV-specific T cells for adoptive immunotherapy using IL-2, IL-15, and IL-21 [published online ahead of print, 2020 May 5]. Clin Immunol. 2020;217:108456.

  3. Ren L, et al. Identification of neoantigen-specific T cells and their targets: implications for immunotherapy of head and neck squamous cell carcinoma. Oncoimmunology. 2019;8(4):e1568813.

  4. Gatault P, et al. CMV-infected kidney grafts drive the expansion of blood-borne CMV-specific T cells restricted by shared class I HLA molecules via presentation on donor cells. Am J Transplant. 2018;18(8):1904-1913.

  5. Rothe K, et al. Latent Cytomegalovirus Infection in Rheumatoid Arthritis and Increased Frequencies of Cytolytic LIR-1+CD8+ T Cells. Arthritis Rheumatol. 2016;68(2):337-346.

  6. Edvardsen K, et al. Analysis of cellular and humoral immune responses against cytomegalovirus in patients with autoimmune Addison’s disease. J Transl Med. Published 2016 Mar 9. 2016;14:68.

  7. Kato R, et al. Early detection of cytomegalovirus-specific cytotoxic T lymphocytes against cytomegalovirus antigenemia in human leukocyte antigen haploidentical hematopoietic stem cell transplantation. Ann Hematol. 2015;94(10):1707-1715.

Diabetes

  1. Vignali D, et al. Detection and Characterization of CD8+ Autoreactive Memory Stem T Cells in Patients With Type 1 Diabetes. Diabetes. 2018;67(5):936-945.

  2. Dolton G, et al. More tricks with tetramers: a practical guide to staining T cells with peptide-MHC multimers. Immunology. 2015;146(1):11-22.

Epstein-Barr Virus (EBV)

  1. Gate D, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature. 2020;577(7790):399-404.

  2. Klinger M, et al. Multiplex Identification of Antigen-Specific T Cell Receptors Using a Combination of Immune Assays and Immune Receptor Sequencing. PloS One. Published 2015 Oct 28. 2015;10(10):e0141561.

  3. Nagayama H, et al. Gastrointestinal bleeding during anti-angiogenic peptide vaccination in combination with gemcitabine for advanced pancreatic cancer. Clin J Gastroenterol. 2010;3(6):307-317.

  4. Hadrup SR, et al. Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J Immunol. 2006;176(4):2645-2653.

Hepatitis

  1. Kefalakes H, et al. Hepatitis D Virus-Specific CD8+ T Cells Have a Memory-Like Phenotype Associated With Viral Immune Escape in Patients With Chronic Hepatitis D Virus Infection. Gastroenterology. 2019;156(6):1805-1819.e9.

  2. Pirozyan MR, et al. Chemokine-Regulated Recruitment of Antigen-Specific T-Cell Subpopulations to the Liver in Acute and Chronic Hepatitis C Infection. J Infect Dis. 2019;219(9):1430-1438.

  3. Otano I, et al. Molecular Recalibration of PD-1+ Antigen-Specific T Cells from Blood and Liver. Mol Ther. 2018;26(11):2553-2566.

  4. Martini H, et al. Apoptotic Epitope-Specific CD8+ T Cells and Interferon Signaling Intersect in Chronic Hepatitis C Virus Infection. J Infect Dis. 2016;213(4):674-683.

  5. Qasim W, et al. Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HbsAg in a liver transplant patient. J Hepatol. 2015;62(2):486-491.

  6. Zabaleta A, et al. Clinical testing of a dendritic cell targeted therapeutic vaccine in patients with chronic hepatitis C virus infection. Mol Ther Methods Clin Dev. Published 2015 Mar 11. 2015;2:15006.

  7. Schurich A, et al. The third signal cytokine IL-12 rescues the anti-viral function of exhausted HBV-specific CD8 T cells. PloS Pathog. 2013;9(3):e1003208.

Human Immunodeficiency Virus (HIV)

  1. La Rosa C, et al. Rapid Acquisition of Cytomegalovirus-Specific T Cells with a Differentiated Phenotype, in Nonviremic Hematopoietic Stem Transplant Recipients Vaccinated with CMVPepVax. Biol Blood Marrow Transplant. 2019;25(4):771-784.

  2. Frey BF, et al. Effects of Cross-Presentation, Antigen Processing, and Peptide Binding in HIV Evasion of T Cell Immunity. J Immunol. 2018;200(5):1853-1864.

  3. Obara W, et al. Phase I clinical trial of cell division associated 1 (CDCA1) peptide vaccination for castration resistant prostate cancer. Cancer Sci. 2017;108(7):1452-1457.

  4. Yoshikawa T, et al. Large-scale expansion of γδ T cells and peptide-specific cytotoxic T cells using zoledronate for adoptive immunotherapy. Int J Oncol. 2014;45(5):1847-1856.

  5. Suzuki H, et al. Multiple therapeutic peptide vaccines consisting of combined novel cancer testis antigens and anti-angiogenic peptides for patients with non-small cell lung cancer. J Transl Med. Published 2013 Apr 11. 2013;11:97.

  6. Okuyama R, et al. Immunological responses to a multi-peptide vaccine targeting cancer-testis antigens and VEGFRs in advanced pancreatic cancer patients. Oncoimmunology. 2013;2(11):e27010.

  7. Tóth I, et al. Decreased frequency of CD73+CD8+ T cells of HIV-infected patients correlates with immune activation and T cell exhaustion. J Leukoc Biol. 2013;94(4):551-561.

  8. Osawa R, et al. Identification of HLA-A24-restricted novel T Cell epitope peptides derived from P-cadherin and kinesin family member 20A. J Biomed Biotechnol. 2012;2012:848042.

  9. Hofmann C, et al. Human T cells expressing two additional receptors (TETARs) specific for HIV-1 recognize both epitopes. Blood. 2011;118(19):5174-5177.

  10. Lozano JM, et al. Impaired response of HIV type 1-specific CD8(+) cells from antiretroviral-treated patients. AIDS Res Hum Retroviruses. 2007;23(10):1279-1282.

Human Papillomavirus (HPV)

  1. Durham NM, et al. GITR ligand fusion protein agonist enhances the tumor antigen-specific CD8 T-cell response and leads to long-lasting memory. J Immunother Cancer. Published 2017 Jun 20. 2017;5:47.

  2. Jazayeri SD, et al. HPV16-E7-Specific Activated CD8 T Cells in E7 Transgenic Skin and Skin Grafts. Front Immunol. Published 2017 May 4. 2017;8:524.

  3. Viguier M, et al. Peripheral and local human papillomavirus 16-specific CD8+ T-cell expansions characterize erosive oral lichen planus. J Invest Dermatol. 2015;135(2):418-424.

Human T- cell Leukemia Virus (HTLV)

  1. Ichikawa A, et al. Detection of Tax-specific CTLs in lymph nodes of adult T-cell leukemia/lymphoma patients and its association with Foxp3 positivity of regulatory T-cell function. Oncol Lett. 2017;13(6):4611-4618.

Influenza

  1. Lazzaro S, et al. CD8 T-cell priming upon mRNA vaccination is restricted to bone-marrow-derived antigen-presenting cells and may involve antigen transfer from myocytes. Immunology. 2015;146(2):312-326.

  2. Van de Sandt CE, et al. Human Influenza A Virus-Specific CD8+ T-Cell Response Is Long-lived. J Infect Dis. 2015;212(1):81-85.

  3. Ambati A, et al. Immunogenicity of virosomal adjuvanted trivalent influenza vaccination in allogeneic stem cell transplant recipients. Transpl Infect Dis. 2015;17(3):371-379.

  4. Ruiz-Riol M, et al. Influenza, but not HIV-specific CTL epitopes, elicits delayed-type hypersensitivity (DTH) reactions in HIV-infected patients. Eur J Immunol. 2013;43(6):1545-1554.

  5. Kim YH, et al. In situ detection of HY-specific T cells in acute graft-versus-host disease-affected male skin after sex-mismatched stem cell transplantation. Biol Blood Marrow Transplant. 2012;18(3):381-387.

Lymphocytic Choriomeningitis Virus (LCMV)

  1. Trautmann T, et al. CD4+ T-cell help is required for effective CD8+ T cell-mediated resolution of acute viral hepatitis in mice. PloS One. Published 2014 Jan 21. 2014;9(1):e86348.

  2. Bartholdy C, et al. T-cell intrinsic expression of MyD88 is required for sustained expansion of the virus-specific CD8+ T-cell population in LCMV-infected mice. J Gen Virol. 2009;90(Pt 2):423-431.

Transplantation

  1. St John LS, et al. PR1-specific cytotoxic T lymphocytes are relatively frequent in umbilical cord blood and can be effectively expanded to target myeloid leukemia. Cytotherapy. 2016;18(8):995-1001.

  2. Goodyear OC, et al. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML). Blood. 2012;119(14):3361-3369.

Vaccine

  1. Li B, et al. Improved proliferation of antigen-specific cytolytic T lymphocytes using a multimodal nanovaccine. Int J Nanomedicine. Published 2016 Nov 16. 2016;11:6103-6121.

  2. Rossi A, et al. Optimization of mucosal responses after intramuscular immunization with integrase defective lentiviral vector. PloS One. Published 2014 Sep 11. 2014;9(9):e107377.

  3. Ohlfest JR, et al. Vaccine injection site matters: qualitative and quantitative defects in CD8 T cells primed as a function of proximity to the tumor in a murine glioma model. J Immunol. 2013;190(2):613-620.

  4. Holst PJ, et al. Vaccination against lymphocytic choriomeningitis virus infection in MHC class II-deficient mice. J Immunol. 2011;186(7):3997-4007.

  5. Baba T, et al. Phase I clinical trial of the vaccination for the patients with metastatic melanoma using gp100-derived epitope peptide restricted to HLA-A*2402. J Transl Med. Published 2010 Sep 16. 2010;8:84.

Viral Infection

  1. Hughes E, et al. Primary breast tumours but not lung metastases induce protective anti-tumour immune responses after Treg-depletion [published online ahead of print, 2020 May 23]. Cancer Immunol Immunother. 2020;10.1007/s00262-020-02603-x.

  2. Minervina AA, et al. Primary and secondary anti-viral response captured by the dynamics and phenotype of individual T cell clones. Elife. Published 2020 Feb 21. 2020;9:e53704.

  3. Ambalathingal GR, et al. Proteome-wide analysis of T-cell response to BK polyomavirus in healthy virus carriers and kidney transplant recipients reveals a unique transcriptional and functional profile. Clin Transl Immunology. Published 2020 Jan 14. 2020;9(1):e01102.

  4. Egui A, et al. Differential phenotypic and functional profile of epitope-specific cytotoxic CD8+ T cells in benznidazole-treated chronic asymptomatic Chagas disease patients. Biochim Biophys Acta Mol Basis Dis. 2020;1866(3):165629.

  5. Tappe D, et al. Analysis of exotic squirrel trade and detection of human infections with variegated squirrel bornavirus 1, Germany, 2005 to 2018. Euro Surveill. 2019;24(8):1800483

  6. Kim AR, et al. Herpes Zoster DNA Vaccines with IL-7 and IL-33 Molecular Adjuvants Elicit Protective T Cell Immunity. Immune Netw. Published 2018 Oct 31. 2018;18(5):e38.

  7. Bonefeld CM, et al. TCR down-regulation controls virus-specific CD8+ T cell responses. J Immunol. 2008;181(11):7786-7799.

Klickmer

References

  1. Johnston RJ, et al. VISTA is an acidic pH-selective ligand for PSGL-1. Nature. 2019;574(7779):565-570. 

  2. Dolton G, et al. Optimized Peptide-MHC Multimer Protocols for Detection and Isolation of Autoimmune T-Cells. Front Immunol. Published 2018 Jun 29. 2018;9:1378.

  3. Luque S, et al. A multicolour HLA-specific B-cell FluoroSpot assay to functionally track circulating HLA-specific memory B cells. J Immunol Methods. 2018;462:23-33.

  4. Bentzen AK, et al. T cell receptor fingerprinting enables in-depth characterization of the interactions governing recognition of peptide-MHC complexes [published online ahead of print, 2018 Nov 19]. Nat Biotechnol. 2018;10.1038/nbt.4303.

  5. Chancellor A, et al. CD1b-restricted GEM T cell responses are modulated by Mycobacterium tuberculosis mycolic acid meromycolate chains. Proc Natl Acad Sci U S A. 2017;114(51):E10956-E10964.

  6. Massilamany C, et al. Major Histocompatibility Complex Class II Dextramers: New Tools for the Detection of antigen-Specific, CD4 T Cells in Basic and Clinical Research. Scand J Immunol. 2015;82(5):399-408.

  7. Neller MA, et al. Naive CD8⁺ T-cell precursors display structured TCR repertoires and composite antigen-driven selection dynamics. Immunol Cell Biol. 2015;93(7):625-633. 

  8. Lolli F, et al. Increased CD8+ T cell responses to apoptotic T cell-associated antigens in multiple sclerosis. J Neuroinflammation. Published 2013 Jul 27. 2013;10:94.

  9. Kasmar AG, et al. Cutting Edge: CD1a tetramers and dextramers identify human lipopeptide-specific T cells ex vivo. J Immunol. 2013;191(9):4499-4503.

  10. Yang GB, et al. Immunization with recombinant macaque major histocompatibility complex class I and II and human immunodeficiency virus gp140 inhibits simian-human immunodeficiency virus infection in macaques. J Gen Virol. 2012;93(Pt 7):1506-1518.

  11. Mörner A, et al. Immunization with recombinant HLA classes I and II, HIV-1 gp140, and SIV p27 elicits protection against heterologous SHIV infection in rhesus macaques. J Virol. 2011;85(13):6442-6452.

  12. Wang Y, et al. P19-20. Allogeneic stimulation of the anti-viral APOBEC3G in human CD4+ T cells and prevention of SHIV infectivity in macaques immunized with HLA antigens. Retrovirology. Published 2009 Oct 22. 2009;6(Suppl 3):P340.

dCODE Dextramer®

References

  1. Beshnova D, Ye J, Onabolu O, et al. De novo prediction of cancer-associated T cell receptors for noninvasive cancer detection. Sci Transl Med. 2020;12(557).

  2. Fischer DS, Wu Y, Schubert B, Theis FJ. Predicting antigen specificity of single T cells based on TCR CDR3 regions. Mol Syst Biol. 2020;16(8).

  3. Regeneron presentation, "Multiplexing Oligo-Dextramer to Pair TCR Specificities with Phenotypes" https://www.youtube.com/watch?v=i3qr_0kjkfw&feature=youtu.be&t=1

  4. 10x Genomics Application Note: A new Way of Exploring Immunity

  5. Poster: Simultaneous Single Cell Analysis of Multiple Analytes

  6. Poster: MHC II dCODE Dextramer technology allows characterization of antigen-specificity, TCR clonotype and gene expression of single CD4+ T-cells

  7. Bentzen AK, et al. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat Biotechnol. 2016;34(10):1037-1045. 

Cd1d Dextramer®

References

  1. Lenart M, et al. Comparison of 6B11 mAb and α-GalCer-loaded CD1d dextramers for detection of iNKT cells by flow cytometry. J Immunol Methods. 2017;446:1-6.

Dextramer® CMV kit

References

  1. Hoffmann J, et al. Myocardial ischemia and reperfusion leads to transient CD8 immune deficiency and accelerated immunosenescence in CMV-seropositive patients. Circ Res. 2015;116(1):87-98.