Please find a selection of publications from Immudex' customers organized according to the Dextramer® product used and the research area of interest:

 

MHC Dextramer® Reagents

Cancer

  1. Johnson DT, et al. Acute myeloid leukemia cell membrane-coated nanoparticles for cancer vaccination immunotherapy. Leukemia. 2021;1(1-12)

  2. Sugata K, et al. Affinity-matured HLA class II dimers for robust staining of antigen-specific CD4+ T cells. Nature Biotechnology, 2021;39(958-967)

  3. Darrigrand R, et al. Isoginkgetin derivative IP2 enhances the adaptive immune response against tumor antigens. Communications Biology, 2021;4(269)

  4. Zappasodi R, et al. CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours. Nature, 2021;591(652–658)

  5. Smith C, et al. Complete response to PD-1 blockade following EBV-specific T-cell therapy in metastatic nasopharyngeal carcinoma, npj Precision Oncology, 2021;5(24)

  6. Geuijen C, et al. A human CD137×PD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade. Nature Communications, 2021;12(4445)

  7. Dixon KO, et al. TIM-3 restrains anti-tumour immunity by regulating inflammasome activation. Nature, 2020;595,(101–106)

  8. Oh SA, et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nature Cancer, 2020;1(681–691)

  9. Ni Q, et al. A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer.  Science advances, 2020;6(12):1-12

  10. Vazquez-Lombardi R, et al. CRISPR-targeted display of functional T cell receptors enables engineering of enhanced specificity and prediction of cross-reactivity. bioRxiv, 2020;1(1):1-28

  11. Hodge K, et al. Recent developments in neoantigen-based cancer vaccines. Asian Pacific Journal of Allergy and Immunology, 2020;38(1):91-101

  12. Hughes E, et al. Primary breast tumours but not lung metastases induce protective anti-tumour immune responses after Treg-depletion. Cancer immunology, immunotherapy: CII,2020; 69(10):2063–2073.

  13. Roy DC, et al. ATIR101 administered after T-cell-depleted haploidentical HSCT reduces NRM and improves overall survival in acute leukemia. Leukemia, 2020;34(1907–1923)

  14. Lauder SN, et al. Enhanced antitumor immunity through sequential targeting of PI3Kδ and LAG3. Journal for ImmunoTherapy of Cancer,  2020;8(1):e000693.

  15. Merhi M, et al. Persistent anti-NY-ESO-1-specific T cells and expression of differential biomarkers in a patient with metastatic gastric cancer benefiting from combined radioimmunotherapy treatment: a case report. Journal for Immunotherapy of Cancer, 2020;8(e001278)

  16. Matsushita M, et al. Characteristics of a Novel Target Antigen Against Myeloma Cells for Immunotherapy. Vaccines, 2020;8(4):579

  17. Lynn GM, et al. Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat Biotechnol. 2020;38(3):320-332.

  18. Capietto AH, et al. Mutation position is an important determinant for predicting cancer neoantigens. J Exp Med. 2020;217(4):e20190179.

  19. Gemta LF, et al. Impaired enolase 1 glycolytic activity restrains effector functions of tumor-infiltrating CD8+ T cells. Sci Immunol. 2019;4(31):eaap9520.

  20. Leclerc M, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nature Communications, 2019;10(3345)

  21. Noviello M, et al. Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT. Nature Communications, 2019;10(1065)

  22. Wickström SL, et al. Cancer Neoepitopes for Immunotherapy: Discordance Between Tumor-Infiltrating T Cell Reactivity and Tumor MHC Peptidome Display. Frontiers in immunology, 2019;10(2766)

  23. Johnston RJ, et al. VISTA is an acidic pH-selective ligand for PSGL-1. Nature, 2019;574(565–570)

  24. Kerdidani D, et al. Wnt1 silences chemokine genes in dendritic cells and induces adaptive immune resistance in lung adenocarcinoma. Nature Communications, 2019;10(1405)

  25. Westdorp H, et al. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. J Immunother Cancer. 2019;7(1):302.

  26. Wang J, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nature Medicine, 2019;25(656-666)

  27. Viborg N, et al. T cell recognition of novel shared breast cancer antigens is frequently observed in peripheral blood of breast cancer patients. Oncoimmunology, 2019;8(12):1663107.

  28. Moerk SJ, et al. Pilot study on the feasibility, safety and immunogenicity of a personalized neoantigen-targeted immunotherapy (NeoPepVac) in combination with anti-PD-1 or anti-PD-L1 in advanced solid tumors. Annals of Oncology, 2019;30(11):41

  29. Sartorius R, et al. Vectorized Delivery of Alpha-GalactosylCeramide and Tumor Antigen on Filamentous Bacteriophage fd Induces Protective Immunity by Enhancing Tumor-Specific T Cell Response. Front Immunol. 2018;9:1496.

  30. Van Hoecke L, et al. Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes. Nature Communications, 2018;9(3417)

  31. Kim HD, et al. Association Between Expression Level of PD1 by Tumor-Infiltrating CD8+ T Cells and Features of Hepatocellular Carcinoma. Gastroenterology. 2018;155(6):1936-1950.e17.

  32. Kato T, et al. Effective screening of T cells recognizing neoantigens and construction of T-cell receptor-engineered T cells. Oncotarget. Published 2018 Jan 13. 2018;9(13):11009-11019.

  33. Rius C, et al. Peptide-MHC Class I Tetramers Can Fail To Detect Relevant Functional T Cell Clonotypes and Underestimate Antigen-Reactive T Cell Populations. J Immunol, 2018;200(7):2263-2279.

  34. Dammeijer F, et al. Depletion of Tumor-Associated Macrophages with a CSF-1R Kinase Inhibitor Enhances Antitumor Immunity and Survival Induced by DC Immunotherapy. Cancer Immunol Res. 2017;5(7):535-546.

  35. Matsushita M, et al. CXorf48 is a potential therapeutic target for achieving treatment-free remission in CML patients. Blood Cancer Journal, 2017;7(e601)

  36. Ichikawa A, et al. Detection of Tax-specific CTLs in lymph nodes of adult T-cell leukemia/lymphoma patients and its association with Foxp3 positivity of regulatory T-cell function. Oncology letters, 2017;13(6),4611–4618.

  37. Matsushita M, et al. CXorf48 is a potential therapeutic target for achieving treatment-free remission in CML patients. Blood Cancer J. 2017;7(9):e601.

  38. Fenstermaker RA, et al. Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma. Cancer Immunol Immunother. 2016;65(11):1339-1352.

  39. Tran T, et al. A Therapeutic Her2/neu Vaccine Targeting Dendritic Cells Preferentially Inhibits the Growth of Low Her2/neu-Expressing Tumor in HLA-A2 Transgenic Mice. Clin Cancer Res. 2016;22(16):4133-4144. 

  40. Baer C, et al. Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity. Nature Cell Biology, 2016;18(790-802)

  41. Laoui D, et al. The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. Nature Communications, 2016;7(13720)

  42. Kranz L, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature, 2016;534(396–401)

  43. Riabov V, et al. Anti-tumor effect of the alphavirus-based virus-like particle vector expressing prostate-specific antigen in a HLA-DR transgenic mouse model of prostate cancer. Vaccine. 2015;33(41):5386-5395.

  44. Japp AS, et al. Dysfunction of PSA-specific CD8+ T cells in prostate cancer patients correlates with CD38 and Tim-3 expression. Cancer Immunol Immunother. 2015;64(11):1487-1494.

  45. Dolton G, et al. Comparison of peptide-major histocompatibility complex tetramers and dextramers for the identification of antigen-specific T cells. Clin Exp Immunol. 2014;177(1):47-63. 

  46. Litterman AJ, et al. Profound impairment of adaptive immune responses by alkylating chemotherapy. J Immunol. 2013;190(12):6259-6268.

  47. Osawa R, et al. Identification of HLA-A24-restricted novel T Cell epitope peptides derived from P-cadherin and kinesin family member 20A. Journal of biomedicine & biotechnology, 2012;1(848042)

  48. Höchst B, et al. Liver sinusoidal endothelial cells contribute to CD8 T cell tolerance toward circulating carcinoembryonic antigen in mice. Hepatology. 2012;56(5):1924-1933.

  49. Hillerdal V, et al. T cells engineered with a T cell receptor against the prostate antigen TARP specifically kill HLA-A2+ prostate and breast cancer cells. Proc Natl Acad Sci U S A. 2012;109(39):15877-15881.

  50. Kollgaard T, et al. Natural T-cell responses against minor histocompatibility antigen (mHag) HY following HLA-matched hematopoietic cell transplantation: what are the requirements for a ‘good’ mHag?. Leukemia,  2008;22(1948–1951)

  51. Sørensen RB, et al. Efficient tumor cell lysis mediated by a Bcl-X(L) specific T cell clone isolated from a breast cancer patient. Cancer Immunol Immunother. 2007;56(4):527-533.

Cell Therapy

  1. Jæhger DE, et al. Enhancing adoptive CD8 T cell therapy by systemic delivery of tumor associated antigens. Scientific Reports, 2021;11(19794)

  2. Yarmarkovich M, et al. Cross-HLA targeting of intracellular oncoproteins with peptide-centric CARs. Nature, 2021;599(477–484)

  3. Wang B, et al. Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells. Nature Biomedical Engineering, 2021;5(429-220)

  4. Bunse M, et al. CXCR5 CAR-T cells simultaneously target B cell non-Hodgkin’s lymphoma and tumor-supportive follicular T helper cells. Nature Communications, 2021;12(240)

  5. Stadtmauer EA, et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020;367(6481):eaba7365.

  6. de Goeje PL, et al. Autologous Dendritic Cell Therapy in Mesothelioma Patients Enhances Frequencies of Peripheral CD4 T Cells Expressing HLA-DR, PD-1, or ICOS. Frontiers in Immunology. 2018;9:2034.

  7. Greco R, et al. Immune monitoring in allogeneic hematopoietic stem cell transplant recipients: a survey from the EBMT-CTIWP. Bone Marrow Transplantation, 2018;53(1201–1205)

  8. Mastaglio S, et al. NY-ESO-1 TCR single edited stem and central memory T cells to treat multiple myeloma without graft-versus-host disease. Blood. 2017;130(5):606-618.

  9. Walseng E, et al. A TCR-based Chimeric Antigen Receptor. Scientific Reports, 2017;7(10713)

  10. Squadrito M, et al. EVIR: chimeric receptors that enhance dendritic cell cross-dressing with tumor antigens. Nature Methods, 2018;15(183-186)

  11. Ma Q, et al. A novel TCR-like CAR with specificity for PR1/HLA-A2 effectively targets myeloid leukemia in vitro when expressed in human adult peripheral blood and cord blood T cells. Cytotherapy, 2016;18(985-994)

  12. Sandri S, et al. Feasibility of Telomerase-Specific Adoptive T-cell Therapy for B-cell Chronic Lymphocytic Leukemia and Solid Malignancies. Cancer Research, 2016;76(2540-2551)

  13. Yoshikawa T, et al. Large-scale expansion of γδ T cells and peptide-specific cytotoxic T cells using zoledronate for adoptive immunotherapy. International Journal of Immunology. 2014;45(5):1847-1856.

  14. Hillerdal V, et al. T cells engineered with a T cell receptor against the prostate antigen TARP specifically kill HLA-A2+ prostate and breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2012;109(39)

Melanoma

  1. Sahin U, Oehm P, Derhovanessian E, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature. 2020;10.1038/s41586-020-2537-9. 

  2. Karlsson J, et al. Molecular profiling of driver events in metastatic uveal melanoma, Nat Commun. 2020; 10.1038/s41467-020-15606-0.

  3. Spindler MJ, et al. Massively parallel interrogation and mining of natively paired human TCRαβ repertoires. Nat Biotechnol. 2020;38(5):609-619.

  4. Santos PM, et al. Impact of checkpoint blockade on cancer vaccine-activated CD8+ T cell responses. J Exp Med. 2020;217(7):e20191369.

  5. Kim KH, et al. PD-1 blockade-unresponsive human tumor-infiltrating CD8+ T cells are marked by loss of CD28 expression and rescued by IL-15 [published online ahead of print, 2020 Apr 24]. Cell Mol Immunol. 2020;10.1038/s41423-020-0427-6. 

  6. Mensali, N. et al. NK cells specifically TCR-dressed to kill cancer cells. EBioMedicine 40 (2019) 106–117

  7. Benveniste PM, et al. In vitro-generated MART-1-specific CD8 T cells display a broader T-cell receptor repertoire than ex vivo naïve and tumor-infiltrating lymphocytes. Immunol Cell Biol. 2019;97(4):427-434.

  8. Kwiatkowska-Borowczyk E, et al. Whole cell melanoma vaccine genetically modified to stem cells like phenotype generates specific immune responses to ALDH1A1 and long-term survival in advanced melanoma patients. Oncoimmunology. Published 2018 Aug 24. 2018;7(11):e1509821.

  9. Lutz M, et al. Boost and loss of immune responses against tumor-associated antigens in the course of pregnancy as a model for allogeneic immunotherapy. Blood. 2015;125(2):261-272.

  10. Wang S, et al. A novel MHC- dextramer assay to identify melanoma antigen-specific CD8+ T cells from solid tumor disaggregates and matched peripheral blood. J. immunotherapy cancer 3, P109 (2015).

  11. Uzana R, et al. Trogocytosis is a gateway to characterize functional diversity in melanoma-specific CD8+ T cell clones. J Immunol. 2012;188(2):632-640.

  12. Sørensen BR, et al. Melanoma inhibitor of apoptosis protein (ML-IAP) specific cytotoxic T lymphocytes cross-react with an epitope from the auto-antigen SS56. J Invest Dermatol. 2009;129(8):1992-1999.

  13. Machlenkin A, et al. Capture of tumor cell membranes by trogocytosis facilitates detection and isolation of tumor-specific functional CTLs. Cancer Res. 2008;68(6):2006-2013.

Bacterial Infections

Viral Infection

  1. Lasrado N, et al. Attenuated strain of CVB3 with a mutation in the CAR-interacting region protects against both myocarditis and pancreatitis. Scientific Reports, 2021;11(12432)

  2. Leb-Reichl VM, et al. Leveraging immune memory against measles virus as an antitumor strategy in a preclinical model of aggressive squamous cell carcinoma. Journal for Immunotherapy of Cancer, 2021;

  3. Minervina AA, et al. Primary and secondary anti-viral response captured by the dynamics and phenotype of individual T cell clones. Elife. 2020;9:e53704.

  4. Barili V, et al. Targeting p53 and histone methyltransferases restores exhausted CD8+ T cells in HCV infection. Nature Communications, 2020;11(604)

  5. Ambalathingal GR, et al. Proteome-wide analysis of T-cell response to BK polyomavirus in healthy virus carriers and kidney transplant recipients reveals a unique transcriptional and functional profile. Clin Transl Immunology. 2020;9(1):e01102.

  6. Egui A, et al. Differential phenotypic and functional profile of epitope-specific cytotoxic CD8+ T cells in benznidazole-treated chronic asymptomatic Chagas disease patients. Biochim Biophys Acta Mol Basis Dis. 2020;1866(3):165629.

  7. Tappe D, et al. Analysis of exotic squirrel trade and detection of human infections with variegated squirrel bornavirus 1, Germany, 2005 to 2018. Euro Surveill. 2019;24(8):1800483

  8. Myers LM, et al. A functional subset of CD8+ T cells during chronic exhaustion is defined by SIRPα expression. Nature Communications, 2019;10(794)

  9. Kim AR, et al. Herpes Zoster DNA Vaccines with IL-7 and IL-33 Molecular Adjuvants Elicit Protective T Cell Immunity. Immune Netw. 2018;18(5):e38.

  10. Pedersen NF, et al. Automated Analysis of Flow Cytometry Data to Reduce Inter-Lab Variation in the Detection of Major Histocompatibility Complex Multimer-Binding T Cells. Frontiers in Immunology. 2017;8(858):1-12

  11. Schweneker M, et al. Recombinant Modified Vaccinia VirusAnkara Generating Ebola Virus-LikeParticles. Journal of Virology. 2017; 91(11):e00343-17

  12. Ruibal P, et al. Unique human immune signature of Ebola virus disease in Guinea. Nature. 2016;533(7601):100-104.

  13. Bonefeld CM, et al. TCR down-regulation controls virus-specific CD8+ T cell responses. J Immunol. 2008;181(11):7786-7799.

COVID-19

Cytomegalovirus (CMV)

  1. Griessl M, et al. Stochastic Episodes of Latent Cytomegalovirus Transcription Drive CD8 T-Cell “Memory Inflation” and Avoid Immune Evasion. Frontiers in Immunology. 2021;12(1):668885

  2. van den Berg, S. et al. Quantification of T-cell dynamics during latent cytomegalovirus infection in humans. PLoS Pathogens. 2021;17(12):1-27

  3. Chen GL, et al. Low-level Cytomegalovirus Antigenemia Promotes Protective Cytomegalovirus Antigen Specific T-Cells after Allogeneic Hematopoietic Cell Transplantation [published online ahead of print, 2020 Jul 25]. Biol Blood Marrow Transplant. 2020;S1083-8791(20)30457-2. 

  4. Valle-Arroyo J, et al. Lack of cytomegalovirus (CMV)-specific cell-mediated immune response using QuantiFERON-CMV assay in CMV-seropositive healthy volunteers: fact not artifact. Scientific Reports, 2020;10(7194)

  5. Luo XH, et al. Generation of high-affinity CMV-specific T cells for adoptive immunotherapy using IL-2, IL-15, and IL-21. Clin Immunol. 2020;217:108456.

  6. Gatault P, et al. CMV-infected kidney grafts drive the expansion of blood-borne CMV-specific T cells restricted by shared class I HLA molecules via presentation on donor cells. Am J Transplant. 2018;18(8):1904-1913.

  7. Emerson R, et al. Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire. Nature Genomics, 2017;49(659-665)

  8. Rothe K, et al. Latent Cytomegalovirus Infection in Rheumatoid Arthritis and Increased Frequencies of Cytolytic LIR-1+CD8+ T Cells. Arthritis Rheumatol. 2016;68(2):337-346.

  9. Edvardsen K, et al. Analysis of cellular and humoral immune responses against cytomegalovirus in patients with autoimmune Addison’s disease. J Transl Med. Published 2016 Mar 9. 2016;14:68.

  10. Kato R, et al. Early detection of cytomegalovirus-specific cytotoxic T lymphocytes against cytomegalovirus antigenemia in human leukocyte antigen haploidentical hematopoietic stem cell transplantation. Ann Hematol. 2015;94(10):1707-1715.

Epstein-Barr Virus (EBV)

Hepatitis

  1. Han JW, et al. IFNL3-adjuvanted HCV DNA vaccine reduces regulatory T cell frequency and increases virus-specific T cell responses. Journal of Hepatology. 2020;73(1):72-83.

  2. Kefalakes H, et al. Hepatitis D Virus-Specific CD8+ T Cells Have a Memory-Like Phenotype Associated With Viral Immune Escape in Patients With Chronic Hepatitis D Virus Infection. Gastroenterology. 2019;156(6):1805-1819.e9.

  3. Pirozyan MR, et al. Chemokine-Regulated Recruitment of Antigen-Specific T-Cell Subpopulations to the Liver in Acute and Chronic Hepatitis C Infection. J Infect Dis. 2019;219(9):1430-1438.

  4. Otano I, et al. Molecular Recalibration of PD-1+ Antigen-Specific T Cells from Blood and Liver. Mol Ther. 2018;26(11):2553-2566.

  5. Fisicaro P, et al. Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nature Medicine, 2017;23(327-336)

  6. Martini H, et al. Apoptotic Epitope-Specific CD8+ T Cells and Interferon Signaling Intersect in Chronic Hepatitis C Virus Infection. J Infect Dis. 2016;213(4):674-683.

  7. Qasim W, et al. Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HbsAg in a liver transplant patient. J Hepatol. 2015;62(2):486-491.

  8. Zabaleta A, et al. Clinical testing of a dendritic cell targeted therapeutic vaccine in patients with chronic hepatitis C virus infection. Mol Ther Methods Clin Dev. Published 2015 Mar 11. 2015;2:15006.

  9. Schurich A, et al. The third signal cytokine IL-12 rescues the anti-viral function of exhausted HBV-specific CD8 T cells. PloS Pathog. 2013;9(3):e1003208.

Human Immunodeficiency Virus (HIV)

Human Papillomavirus (HPV)

Influenza

Lymphocytic Choriomeningitis Virus (LCMV)

Vaccine

  1. Kaaijk P, et al. Novel mumps virus epitopes reveal robust cytotoxic T cell responses after natural infection but not after vaccination. Scientific Reports, 2021;11(13664)
     
  2. Arbelaez, C.A., et al. A nanoparticle vaccine that targets neoantigen peptides to lymphoid tissues elicits robust antitumor T cell responses. npj Vaccines. 2020;5(1):1-14

  3. Stolk, D, et al. Lipo-Based Vaccines as an Approach to Target Dendritic Cells for Induction of T- and iNKT Cell Responses. Frontiers in Immunology. 2020;11(990);1-14

  4. Maynard SK, et al. Vaccination with synthetic long peptide formulated with CpG in an oil-in-water emulsion induces robust E7-specific CD8 T cell responses and TC-1 tumor eradication. BMC Cancer, 2019;19(540)

  5. Schweneker M, et al. Recombinant Modified Vaccinia Virus Ankara Generating Ebola Virus-Like Particles. Journal of Virology, 2017;91(11)

  6. Speir M, et al. Glycolipid-peptide conjugate vaccines enhance CD8+ T cell responses against human viral proteins. Scientific Reports, 2017;7(14273)

  7. Li B, et al. Improved proliferation of antigen-specific cytolytic T lymphocytes using a multimodal nanovaccine. Int J Nanomedicine. Published 2016 Nov 16. 2016;11:6103-6121.

  8. Lazzaro S, et al. CD8 T-cell priming upon mRNA vaccination is restricted to bone-marrow-derived antigen-presenting cells and may involve antigen transfer from myocytes. Immunology. 2015;146(2):312-326.

  9. Ambati A, et al. Immunogenicity of virosomal adjuvanted trivalent influenza vaccination in allogeneic stem cell transplant recipients. Transplant Infectious Disease, 2015;17(3):371-379.

  10. Rossi A, et al. Optimization of mucosal responses after intramuscular immunization with integrase defective lentiviral vector. PloS One. 2014;9(9):e107377.

  11. Ohlfest JR, et al. Vaccine injection site matters: qualitative and quantitative defects in CD8 T cells primed as a function of proximity to the tumor in a murine glioma model. J Immunol. 2013;190(2):613-620.

  12. Holst PJ, et al. Vaccination against lymphocytic choriomeningitis virus infection in MHC class II-deficient mice. J Immunol. 2011;186(7):3997-4007.

  13. Baba T, et al. Phase I clinical trial of the vaccination for the patients with metastatic melanoma using gp100-derived epitope peptide restricted to HLA-A*2402. J Transl Med. 2010;8:84.

Autoimmunity

  1. Feizi N, et al. CD8+ T cells specific for cryptic apoptosis-associated epitopes exacerbate experimental autoimmune encephalomyelitis. Cell Death and Disease, 2021;12(1):1026. 

  2. Haigh O, et al. Genetic Bias, Diversity Indices, Physiochemical Properties and CDR3 Motifs Divide Auto-Reactive from Allo-Reactive T-Cell Repertoires. International Journal of Molecular Sciences, 2021;22(4):1625

  3. Wolf D, et al. Pathogenic Autoimmunity in Atherosclerosis Evolves From Initially Protective Apolipoprotein B100-Reactive CD4+ T-Regulatory Cells. Circulation, 2020;142(13):1279-1293.

  4. Gate D, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature, 2020;577(399-404)

  5. Eggenhuizen PJ, et al. Treg Enhancing Therapies to Treat Autoimmune Diseases. International Journal of Molecular Sciences, 2020;21(19):7015

  6. Raverdeau M, et al. Retinoic acid-induced autoantigen-specific type 1 regulatory T cells suppress autoimmunity. EMBO Reports, 2019;20(5): e47121

  7. LeMessurier KS, et al. Allergic inflammation alters the lung microbiome and hinders synergistic co-infection with H1N1 influenza virus and Streptococcus pneumoniae in C57BL/6 mice. Scientific Reports, 2019;9(19360)

  8. Krishnan B, et al. Branched chain α-ketoacid dehydrogenase kinase 111-130, a T cell epitope that induces both autoimmune myocarditis and hepatitis in A/J mice. Immun Inflamm Dis. 2017;5(4):421-434.

  9. Brownlie RJ, et al. Resistance to TGFβ suppression and improved anti-tumor responses in CD8+ T cells lacking PTPN22. Nature Communications, 2017;8(1343)

  10. Henault J, et al. Self-reactive IgE exacerbates interferon responses associated with autoimmunity. Nature Immunology, 2016;17(196-203)

  11. Jia T, et al. Association of Autophagy in the Cell Death Mediated by Dihydrotestosterone in Autoreactive T Cells Independent of Antigenic Stimulation [published correction appears in J Neuroimmune Pharmacol. 2016;11(1):227-8]. J Neuroimmune Pharmacol. 2015;10(4):620-634.

  12. Citro A, et al. CD8+ T Cells Specific to Apoptosis-Associated Antigens Predict the Response to Tumor Necrosis Factor Inhibitor Therapy in Rheumatoid Arthritis. PLoS One. 2015;10(6):e0128607.

  13. Massilamany C, et al. Direct staining with major histocompatibility complex class II dextramers permits detection of antigen-specific, autoreactive CD4 T cells in situ. PLoS One. 2014;9(1):e87519.

  14. Massilamany C, et al. Detection of autoreactive CD4 T cells using major histocompatibility complex class II dextramers. BMC immunology, 2011;12(40):1-14

Diabetes

Transplantation

Reviews

Nanotechnology

  1. Leb-Reichl VM, et al. Leveraging immune memory against measles virus as an antitumor strategy in a preclinical model of aggressive squamous cell carcinoma. Journal for Immunotherapy of Cancer, 2021;


  2. Arbelaez, C.A., et al. A nanoparticle vaccine that targets neoantigen peptides to lymphoid tissues elicits robust antitumor T cell responses. npj Vaccines. 2020;5(1):1-14

  3. Stolk, D, et al. Lipo-Based Vaccines as an Approach to Target Dendritic Cells for Induction of T- and iNKT Cell Responses. Frontiers in Immunology. 2020;11(990);1-14

  4. Ruiz-de-Angulo A, et al. Chemically Programmed Vaccines: Iron Catalysis in Nanoparticles Enhances Combination Immunotherapy and Immunotherapy-Promoted Tumor Ferroptosis. Cell Press, 2020;23(9), 101499

  5. Maynard SK, et al. Vaccination with synthetic long peptide formulated with CpG in an oil-in-water emulsion induces robust E7-specific CD8 T cell responses and TC-1 tumor eradication. BMC Cancer, 2019;19(540)

  6. Raverdeau M, et al. Retinoic acid-induced autoantigen-specific type 1 regulatory T cells suppress autoimmunity. Embo Reports, 2019;20(5), e47121

  7. Traini G, et al. Cancer Immunotherapy of TLR4 Agonist–Antigen Constructs Enhanced with Pathogen-Mimicking Magnetite Nanoparticles and Checkpoint Blockade of PD-L1. Small, 2019;15(4), e1803993

  8. Van der Jeught K, et al. Dendritic Cell Targeting mRNA Lipopolyplexes Combine Strong Antitumor T-Cell Immunity with Improved Inflammatory Safety. ACS Nanotechnology, 2018;12(10):9815-9829

  9. Schweneker M, et al. Recombinant Modified Vaccinia Virus Ankara Generating Ebola Virus-Like Particles. Journal of Virology, 2017;91(11)

  10. Zhu G, et al. Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy. Nature Communications, 2020;8(1482)

  11. Li B, et al. Improved proliferation of antigen-specific cytolytic T lymphocytes using a multimodal nanovaccine. International Journal of Nanomedicine, 2016;11(1): 6103–6121

  12. Almeida J, et al. In vivo gold nanoparticle delivery of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor models. Small, 2015;11(12):1453–1459. 

Parasitic Infections

Clinical Trials

  1. Clifton GT, et al. Results of a Randomized Phase IIb Trial of Nelipepimut-S + Trastuzumab versus Trastuzumab to Prevent Recurrences in Patients with High-Risk HER2 Low-Expressing Breast Cancer. Clin Cancer Res. 2020;26(11):2515-2523.

  2. Stadtmauer EA, et al. CRISPR-engineered T cells in patients with refractory cancer. Science, 2020; 367(6481)

  3. Moerk SK, et al. Pilot study on the feasibility, safety and immunogenicity of a personalized neoantigen-targeted immunotherapy (NeoPepVac) in combination with anti-PD-1 or anti-PD-L1 in advanced solid tumors. Annals of Oncology, 2019;30(1)

  4. La Rosa C, et al. Rapid Acquisition of Cytomegalovirus-Specific T Cells with a Differentiated Phenotype, in Nonviremic Hematopoietic Stem Transplant Recipients Vaccinated with CMVPepVax. Biol Blood Marrow Transplant. 2019;25(4):771-784.

  5. Westdorp H, et al. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. J Immunother Cancer. 2019;7(1):302.

  6. Maschan M, et al. Low-dose donor memory T-cell infusion after TCR alpha/beta depleted unrelated and haploidentical transplantation: results of a pilot trial. Bone Marrow Transplantation, 2018;53(264–273)

  7. Obara W, et al. Phase I clinical trial of cell division associated 1 (CDCA1) peptide vaccination for castration resistant prostate cancer. Cancer Sci. 2017;108(7):1452-1457.

  8. Fenstermaker RA, et al. Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma. Cancer immunology, immunotherapy, 2017;65(11): 1339–1352
  9. Zabaleta A, et al. Clinical testing of a dendritic cell targeted therapeutic vaccine in patients with chronic hepatitis C virus infection. Molecular Therapeutics - Methods and Clinical Development, 2015;2(1): 15006

  10. Okuyama R, et al. Immunological responses to a multi-peptide vaccine targeting cancer-testis antigens and VEGFRs in advanced pancreatic cancer patients. Oncoimmunology. 2013;2(11):e27010.

  11. Aruga A, et al. Long-term Vaccination with Multiple Peptides Derived from Cancer-Testis Antigens Can Maintain a Specific T-cell Response and Achieve Disease Stability in Advanced Biliary Tract Cancer. Clin Cancer Res. 2013;19(8):2224-2231.

  12. Suzuki H, et al. Multiple therapeutic peptide vaccines consisting of combined novel cancer testis antigens and anti-angiogenic peptides for patients with non-small cell lung cancer. Journal of Translational Medicine, 2013;11(97)

  13. Sawada Y, et al. Phase I trial of a glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma: immunologic evidence and potential for improving overall survival. Clin Cancer Res. 2012;18(13):3686-3696.

Our Technology

All our products are based on the following technologies:

Dextramer®Technology

dCODE® Technology

Klickmer® Technology

U-Load® Technology

Immudex Citation Guidelines

To cite Immudex® reagents, please use the following guidelines

Klickmer®

References

  1. Wolf D, et al. Pathogenic Autoimmunity in Atherosclerosis Evolves From Initially Protective Apolipoprotein B 100-Reactive CD4 + T-Regulatory Cells. Circulation. 2020 Sep 29;142(13):1279-1293.

  2. Greenshields-Watson A, et al. CD4+ T Cells Recognize Conserved Influenza A Epitopes through Shared Patterns of V-Gene Usage and Complementary Biochemical Features. Cell Rep. 2020 Jul 14;32(2):107885.
     
  3. Johnston RJ, et al. VISTA is an acidic pH-selective ligand for PSGL-1. Nature. 2019;574(7779):565-570. 

  4. Dolton G, et al. Optimized Peptide-MHC Multimer Protocols for Detection and Isolation of Autoimmune T-Cells. Front Immunol. Published 2018 Jun 29. 2018;9:1378.

  5. Luque S, et al. A multicolour HLA-specific B-cell FluoroSpot assay to functionally track circulating HLA-specific memory B cells. J Immunol Methods. 2018;462:23-33.

  6. Bentzen AK, et al. T cell receptor fingerprinting enables in-depth characterization of the interactions governing recognition of peptide-MHC complexes [published online ahead of print, 2018 Nov 19]. Nat Biotechnol. 2018;10.1038/nbt.4303.

  7. Chancellor A, et al. CD1b-restricted GEM T cell responses are modulated by Mycobacterium tuberculosis mycolic acid meromycolate chains. Proc Natl Acad Sci U S A. 2017;114(51):E10956-E10964.

  8. Massilamany C, et al. Major Histocompatibility Complex Class II Dextramers: New Tools for the Detection of antigen-Specific, CD4 T Cells in Basic and Clinical Research. Scand J Immunol. 2015;82(5):399-408.

  9. Neller MA, et al. Naive CD8⁺ T-cell precursors display structured TCR repertoires and composite antigen-driven selection dynamics. Immunol Cell Biol. 2015;93(7):625-633. 

  10. Lolli F, et al. Increased CD8+ T cell responses to apoptotic T cell-associated antigens in multiple sclerosis. J Neuroinflammation. 2013;10:94.

  11. Kasmar AG, et al. Cutting Edge: CD1a tetramers and dextramers identify human lipopeptide-specific T cells ex vivo. J Immunol. 2013;191(9):4499-4503.

  12. Yang GB, et al. Immunization with recombinant macaque major histocompatibility complex class I and II and human immunodeficiency virus gp140 inhibits simian-human immunodeficiency virus infection in macaques. J Gen Virol. 2012;93(Pt 7):1506-1518.

  13. Mörner A, et al. Immunization with recombinant HLA classes I and II, HIV-1 gp140, and SIV p27 elicits protection against heterologous SHIV infection in rhesus macaques. J Virol. 2011;85(13):6442-6452.

  14. Wang Y, et al. P19-20. Allogeneic stimulation of the anti-viral APOBEC3G in human CD4+ T cells and prevention of SHIV infectivity in macaques immunized with HLA antigens. Retrovirology. Published 2009 Oct 22. 2009;6(Suppl 3):P340.